Проблема космологической постоянной
Пробле́ма космологи́ческой постоя́нной — закрепившееся в современной астрофизике выражение, означающее противоречие, которое существует между предсказанием значения космологической постоянной посредством применения двух фундаментальных физических теорий, общей теории относительности (ОТО), а также квантовой физики, и экспериментальными замерами её величины.
Предсказанная величина получается больше экспериментально измеренной на 120 порядков — «наихудшее предсказание, когда-либо сделанное научной теорией», по словам Ли Смолина[1].
Космологическая постоянная и физический вакуум
Физический вакуум, низшее энергетическое состояние квантованного поля, согласно предсказаниям квантовой теории поля, имеет некоторую плотность энергии, которая может быть отлична от нуля (так называемая нулевая энергия). В силу так называемой перенормировки вероятности процессов не зависят от нулевой энергии, так что в рамках КТП нулевая энергия остаётся неизмеримой.
В уравнения ОТО также входит величина, известная как космологическая постоянная или лямбда-член — физическая постоянная, характеризующая свойства вакуума:
, где — плотность энергии вакуума.
Эта величина может быть экспериментально измерена благодаря своему влиянию на метрику (кривизну) пространства в целом.
Экспериментальное значение
Космологическая постоянная может быть измерена благодаря своему влиянию на процесс разбегания галактик. Эти измерения были проделаны в 1998 году двумя группами астрономов, изучавших сверхновые звёзды (см. тёмная энергия), и было получено очень малое значение для космологической постоянной: м−2. Искажения Вселенной становятся ощутимы лишь при масштабах, сравнимых с размером наблюдаемой части Вселенной, м. За эти измерения Сол Перлмуттер, Брайан П. Шмидт и Адам Рисс получили Нобелевскую премию по физике за 2011 год.
Предсказание
Даже одно-единственное квантовое поле, например, электрон-позитронное, согласно КТП, создаёт в вакууме «нулевую» плотность энергии порядка , что уже само по себе даёт значение космологической постоянной м−2, завышенное на много порядков. Более аккуратная оценка «нулевой» энергии методами КТП по порядку величины приближается к планковской плотности (масса и энергия связаны уравнением Эйнштейна), что ещё дальше от действительности.
Примечания
- Lee Smolin. Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует = The trouble with physics: the rise of string theory, the fall of a science, and what comes next. — Boston: Houghton Mifflin, 2006. — ISBN 9780618551057.
Ссылки
- Космологическая постоянная . Дата обращения: 10 августа 2012. Архивировано 10 августа 2012 года.
- С. Вайнберг. «Проблема космологической постоянной» (Лекции имени Мориса Леба по физике в Гарвардском университете) // Успехи физических наук. — Российская академия наук, 1989. — Т. 158, вып. 8. — С. 639—678. — doi:10.3367/UFNr.0158.198908d.0639. Архивировано 10 августа 2012 года.
- O'Dowd, Matt The Crisis in Cosmology . PBS Spacetime (24 января 2019).