Показатель Хёрста
Показатель степени Хёрста, показатель Хёрста или коэффициент Хёрста — мера, используемая в анализе временных рядов. Эта величина уменьшается, когда задержка между двумя одинаковыми парами значений во временном ряду увеличивается. Впервые это понятие использовалось в гидрологии в практических целях для определения размеров плотины на реке Нил в условиях непредсказуемых дождей и засух, наблюдаемых в течение длительного времени. [1] [2] Название «Экспонента Херста» или «Коэффициент Херста» дано в честь Гарольда Эдвина Хёрста (1880—1978) — ведущего исследователя того времени в этой области. Стандартное обозначение H также дано в честь него.
Определение
Показатель Херста, H, определяется в терминах асимптотического поведения масштабированного диапазона как функции отрезка времени временного ряда следующим образом:
где
- — размах накопленных отклонений первых значений от среднего значения ряда,
- — стандартное отклонение
- — математическое ожидание
- — величина промежутка времени (количество точек в отрезке временного ряда)
- — константа
Свойства
Для того, чтобы точнее определить показатель, временной ряд должен быть достаточно длинным[3].
Последовательности, для которых , считаются персистентными — они сохраняют имеющуюся тенденцию, то есть возрастание в прошлом более вероятно приводит к возрастанию в дальнейшем, и наоборот. При значении 0,5 явной тенденции не выражено, а при меньших значениях процесс характеризуется антиперсистентностью — любая тенденция стремится смениться противоположной.
Значения показателя Хёрста природных процессов группируются вблизи значений 0,72-0,73.[3]
Показатель Хёрста связан с размерностью Хаусдорфа-Безиковича следующим соотношением:
- .[4]
Применение
Показатель Хёрста применяется в экономике — в техническом анализе для обоснования предсказания тенденций (в приведенной выше функции исходным рядом будет являться приращение цены), в естественных науках — в анализе различных данных экспериментов — для выявления новых характеристик процесса[5].
Реализация
- На Matlab: https://ideas.repec.org/s/wuu/hscode.html
- На Python: http://github.com/Mottl/hurst
Ссылки и литература
- H.E. Hurst. Long-term storage capacity of reservoirs // Transactions of American Society of Civil Engineers. — 1951. — Т. 116. — С. 770.
- H.E. Hurst, R.P. Black, Y.M. Simaika. Long-term storage: an experimental study. — Constable. — Лондон, 1965.
- Ю. А. Калуш, В. М. Логинов. Показатель Хёрста и его скрытые свойства // Сиб. журн. индустр. матем. — 2002. — Т. 5, вып. 4. — С. 29-37.
- Ю.Н. Кликушин. Метод фрактальной классификации сложных сигналов // Журнал радиоэлектроники. — 2000. — Т. 4.
- Е. А. Ляпунова, А. Н. Петрова, И. Г. Бродова, О. Б. Наймарк, М. А. Соковиков, В. В. Чудинов, С. В. Уваров. Исследование морфологии многомасштабных дефектных структур и локализации пластической деформации при пробивании мишеней из сплава А6061 // Письма в ЖЭТФ. — 2012. — Т. 38, вып. 1. — С. 13-20.