Пи-исчисление
-исчисление в теоретической информатике — исчисление процессов, изначально разработанное Робином Милнером, Иоахимом Пэрроу и Дэвидом Уокером как продолжение работы над исчислением общающихся систем. Целью -исчисления является возможность описать параллельные вычисления, конфигурация которых может меняться на протяжении вычисления.
Неформальное определение
-исчисление принадлежит к семейству исчислений процессов. Фактически -исчисление как λ-исчисление настолько минимально, что не содержит примитивов, таких как числа, булевы выражения, структуры данных, переменные, функции или операторы управления потоком (например, if-then-else, while).
-исчисление определяет динамически взаимодействующие друг с другом параллельные процессы. Каждый процесс может состоять из одного или нескольких действий, расположенных последовательно или параллельно, а также альтернативно или рекурсивно. Действием может быть отправка или получение данных по каналу. Сообщение от одного процесса другому включает имя канала, который может быть использован для ответа. Имя является переменной[1].
Можно также сказать, что -исчисление — это открытая теория, которая зависит от некоторой теории имен. Например, с операционной точки зрения π-исчислении можно представить как процедуру, которая для данной теории имен даёт теорию процессов над этими именами[2].
Конструкции процесса
Центральным для -исчисления является понятие имени. Простота исчисления заключается в двойной роли имён, которые выступают и как каналы связи и как переменные. В исчислении доступны следующие конструкции процесса (точные определения даны в следующих секциях):
- конкуренция, обозначается , где и — два процесса или потока, выполняемых конкурентно.
- связь, где
- префикс ввода — процесс, ожидающий сообщение, отправленное по каналу связи , перед тем как продолжаться как , привязывающий полученное имя к имени . Как правило, это моделирует процесс ожидания связи из сети, или метку
c
, которую можно использовать с помощью операцииgoto c
. - префикс вывода описывает, что имя передаётся через канал , перед тем как продолжаться как . Как правило, это моделирует отправку сообщения через сеть или операцию
goto c
.
- префикс ввода — процесс, ожидающий сообщение, отправленное по каналу связи , перед тем как продолжаться как , привязывающий полученное имя к имени . Как правило, это моделирует процесс ожидания связи из сети, или метку
- репликация, обозначается , которая может быть рассмотрена как процесс, который может всегда создавать новую копию . Как правило, эти модели или сетевой сервис или метка
c
, ожидающая любое числоgoto c
операций. - создание нового имени, обозначается , которое может быть рассмотрено как процесс, размещающий новую константу внутри . Константы -исчисления определяются только через своё имя и всегда являются каналами связи.
- ноль процесс, обозначается 0, процесс, выполнение которого завершено и остановлено.
Минимализм -исчисления не позволяет писать программы в обычном смысле этого слова, но исчисление можно легко расширить. В частности, просто определить структуры управления (такие как рекурсия, циклы и последовательная композиция) и типы данных (такие как функции первого порядка, значения истинности, списки и целые числа). Кроме того, были предложены расширения -исчисления для криптографии с публичным ключом. Прикладное π-исчисление, разработанное Абади и Фурне, даёт этим различным расширениям π-исчисления формальную основу с помощью произвольных типов данных.
Небольшой пример
Ниже приведён пример процесса из трёх параллельных компонент. Канал известен только в двух первых компонентах.
Первые две компоненты способны связываться через канал , при этом связывается с . Следующий шаг процесса:
В этом примере не затрагивается, так как он определён во внутренней области видимости. Теперь вторая и третья параллельные компоненты могут связаться через канал , при этом связывается с . Следующий шаг процесса:
Обратите внимание, что, поскольку локальное имя было выведено, область действия расширена, чтобы охватить также третью компоненту. Наконец, канал можно использовать для отправки имени . После чего все процессы останавливаются.
Применение
-исчисление — один из наиболее популярных формализмов в сообществе управления бизнес-процессами (BPM). Например, популярная литература утверждает (и подвергается критике[3][1]), что XLANG, WSCI, BPML, BPEL и WS-CDL основаны на этом исчислении. По крайней мере, свойства -исчисления — порядок вычисления, связи на основе сообщений, мобильность (англ. mobility) — могут служить основой для языков BPM[1].
Другим неожиданным направлением использования -исчисления является моделирование биомолекулярных систем[4].
Пример бизнес-процесса
Следующий пример может дать представление об описании бизнес-процесса при помощи пи-исчисления (перефразирован из [1]):
- Клиент(заказ,клиент)=
- заказ<клиент>.клиент(блюдо)
- ОфициантПринимаетЗаказ(заказ,заказГотов,заказНеГотов,кухня)=
- заказ(клиент).кухня<заказГотов,заказНеГотов>
- .ОфициантПриноситЕду(заказГотов,заказНеГотов,клиент)
- ОфициантПриноситЕду(заказГотов,заказНеГотов,клиент)=
- заказГотов(блюдо).клиент<блюдо>
- + заказНеГотов(извинения).клиент<извинения>
- Кухня(кухня,заказГотов,заказНеГотов)=
- кухня(заказГотов,заказНеГотов).заказГотов<"борщ">
- Ресторан=
- (ν зкз,клнт,готов,неГотов,кух)
- Клиент(зкз,клнт)
- | ОфициантПринимаетЗаказ(зкз,готов,неГотов,кух)
- | Кухня(кух,готов,неГотов)
Для данного примера исчисление было расширено оператором выбора (P + Q).
Примечания
- Havey, 2005.
- Matthias Radestock, L.G. Meredith. A Reflective Higher-order Calculus // Electronic Notes in Theoretical Computer Science. — 2005. — № 141.
- W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat “humblepie” rather than further inflate the “Pi hype” .
- Regev A., Shapiro E. The π-calculus as an Abstraction for Biomolecular Systems // Modelling in Molecular Biology. Natural Computing Series / Ciobanu G., Rozenberg G.. — Berlin, Heidelberg : Springer, 2004.
Литература
- Milner, Robin. Communicating and Mobile Systems: The π-calculus. — Cambridge, UK : Cambridge University Press, 1999. — ISBN 0-521-65869-1.
- Milner, Robin. The Polyadic π-Calculus: A Tutorial // Logic and Algebra of Specification / F. L. Hamer ; W. Brauer ; H. Schwichtenberg. — Springer-Verlag, 1993.
- Sangiorgi, Davide. The π-calculus: A Theory of Mobile Processes / Davide Sangiorgi, David Walker. — Cambridge, UK : Cambridge University Press, 2001. — ISBN 0-521-78177-9.
- Michael Havey. 3.2. The Pi-Calculus // Essential Business Process Modeling. — O'Reilly Media, Inc., 2005. — ISBN 9780596008437.