Период Пизано

Период Пизано  — это длина периода последовательности Фибоначчи по модулю заданного натурального числа m.

Примеры

Например, определим период Пизано при . Пусть  — -е число Фибоначчи.  — остаток от деления -го числа Фибоначчи на число . Заполнив следующую таблицу,

Определение при
0123456789101112131415161718
0112358132134558914423337761098715972584
0 1 1 2 3 1 0 1 1 2 3 1 0 1 1 2 3 1 0

заметим, что первые шесть чисел (0, 1, 1, 2, 3, 1) последовательности повторяются бесконечно, значит для период Пизано равен шести: .

Последовательность, составленная из периодов Пизано, получила номер A001175, и начало её показано в следующей таблице.

12345678910111213141516
1386202416122460102428484024

Периодичность

Последовательность Фибоначчи по модулю любого натурального числа периодична, так как среди первых пар чисел найдутся две равные пары для некоторых . Поэтому для всех натуральных k выполняется , то есть, последовательность периодична.

Свойства

  • Если a и b взаимно просты, то . Или, если разложить на простые множители: , то (следствие китайской теоремы об остатках).
  • , где за обозначено количество нулей в периоде, а за обозначен индекс первого нуля (не считая ). Более того, известно что .
  • Для простого числа и целого числа выполняется . Более того, для всех точных степеней простых чисел от 1 до миллиона выполнено равенство . Но до сих пор неизвестно (см. открытые математические проблемы), для всех ли чисел справедливо это равенство, и существуют ли такое p, что .
  • Если  — простое число, то справедливы следующие утверждения:
    • при число является делителем ;
    • при число является делителем .
  • Для всех положительных целых чисел справедливо неравенство , причём равенство в нём достигается только на числах вида .

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.