Передаточная функция

Пeрeда́точная фу́нкция — один из способов математического описания динамической системы. Используется в основном в теории управления, связи и цифровой обработке сигналов. Представляет собой дифференциальный оператор, выражающий связь между входом и выходом линейной стационарной системы. Зная входной сигнал системы и передаточную функцию, можно восстановить выходной сигнал.

В теории управления передаточная функция непрерывной системы представляет собой отношение преобразования Лапласа выходного сигнала к преобразованию Лапласа входного сигнала при нулевых начальных условиях.

Так как передаточная функция системы полностью определяет ее динамические свойства, то первоначальная задача расчета САР сводится к определению ее передаточной функции. При расчете настроек регуляторов широко используются достаточно простые динамические модели промышленных объектов управления. Передаточная функция является дробно-рациональной функцией комплексной переменной для разных систем.

Линейные стационарные системы

Пусть  — входной сигнал линейной стационарной системы, а  — её выходной сигнал. Тогда передаточная функция такой системы записывается в виде:

где  — оператор передаточной функции в преобразовании Лапласа,
и  — преобразования Лапласа для сигналов и соответственно:

Дискретная передаточная функция

Для дискретных и дискретно-непрерывных систем вводится понятие дискретной передаточной функции. Пусть  — входной дискретный сигнал такой системы, а  — её дискретный выходной сигнал, . Тогда передаточная функция такой системы записывается в виде:

,

где и  — z-преобразования для сигналов и соответственно:

,
.

Связь с другими динамическими характеристиками

  • АФЧХ системы можно получить из передаточной функции с помощью формальной замены комплексной переменной на :
.

Свойства передаточной функции, полюсы и нули передаточной функции

1. Для стационарных систем (т.е систем неизменяемыми параметрами компонентов) и с сосредоточенными параметрами передаточная функция — это дробно-рациональная функция комплексной переменной :

.

2. Знаменатель и числитель передаточной функции — это характеристические полиномы дифференциального уравнения движения линейной системы. Полюсами передаточной функции называют корни характеристического полинома знаменателя, нули — корни характеристического полинома числителя.

3. В физически реализуемых системах порядок полинома числителя передаточной функции не может превышать порядка полинома её знаменателя , то есть

4. Импульсная переходная функция представляет собой оригинал (преобразования Лапласа) для передаточной функции.

5. При формальной замене в получается комплексная передаточная функция системы, описывающая одновременно амплитудно-частотную (в виде модуля этой функции) и фазо-частотную характеристики системы как её аргумент.

Матричная передаточная функция

Для MIMO-систем вводится понятие матричной передаточной функции. Матричная передаточная функция от вектора входа системы до вектора выхода  — это матрица , элемент -й строки -го столбца представляет собой передаточную функцию системы от -й координаты вектора входа системы до -й координаты вектора выхода.

См. также

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.