Ортонормированная система
Ортонорми́рованная система — ортогональная система, у которой каждый элемент системы имеет единичную норму.
Определение
Для любых элементов этой системы скалярное произведение , где — символ Кронекера:
Ортонормированная система в случае её полноты может быть использована в качестве базиса пространства. При этом разложение любого элемента может быть вычислено по формулам: , где .
Примеры
- В конечномерном пространстве ортонормированной системой будет набор векторов:
- .
- В пространстве ортонормированной системой будет множество функций:
- .
Более того, эта система функций также будет ортонормированным базисом в пространстве .
- В пространстве система функций Радемахера является ортонормированной.
Ортогонализация
По любой линейно независимой системе можно построить ортонормированную систему, применив процесс ортогонализации Грамма-Шмидта.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.