Неравенство Богомолова — Миаоки — Яу

Неравенство Богомолова — Миаоки — Яу — это неравенство

между числами Чжэня компактных комплексных поверхностей общего вида. Главный интерес в этом неравенстве — возможность ограничить возможные топологические типы рассматриваемого вещественного 4-многообразия. Неравенство доказали независимо Яу[1][2] и Миаоки[3], после того как Ван де Вен[4] и Фёдор Богомолов[5]доказали более слабые версии неравенства с константами 8 и 4 вместо 3.

Борель и Хирцебрух показали, что неравенство нельзя улучшить, найдя бесконечно много случаев, в которых выполняется равенство. Неравенство неверно для положительных характеристик — Ленг[6] и Истон[7] привели примеры поверхностей с характеристикой p, такие как обобщённая поверхность Рейно, для которых неравенство не выполняется.

Формулировка неравенства

Обычно неравенство Богомолова — Миаоки — Яу формулируется следующим образом.

Пусть X — компактная комплексная поверхность общего типа, и пусть и — первый и второй класс Чжэня комплексного касательного расслоения поверхности. Тогда

Более того, если выполняется равенство, то X является фактором шара. Последнее утверждение является следствием подхода Яу в дифференциальной геометрии, который основывается на его разрешении гипотезы Калаби.

Поскольку является топологической характеристикой Эйлера, а по теореме о сигнатуре Тома — Хирцебруха , где является сигнатурой формы пересечений на второй когомологии, неравенство Богомолова — Миаоки — Яу можно переписать как ограничение на топологический тип поверхности общего вида:

и более того, если , универсальное покрытие является шаром.

Вместе с неравенством Нётера неравенство Богомолова — Миаоки — Яу устанавливает границы при поиске комплексных поверхностей. Рассмотрение топологических типов, которые могут быть реализованы как комплексные поверхности, называется географией поверхностей. См. статью Поверхности общего типа.

Поверхности с c12 = 3c2

Пусть X — поверхность общего типа с , так что в неравенстве Богомолова — Миаоки — Яу имеет место равенство. Для таких поверхностей Яу[1] доказал, что X изоморфно фактору единичного шара в по бесконечной дискретной группе. Примеры поверхностей, для которых выполняется равенство, найти трудно. Борель[8] показал, что существует бесконечно много значений , для которых поверхности существуют. Мамфорд[9] нашёл ложную проективная плоскость с , которая имеет минимальное возможное значение, поскольку всегда делится на 12, а Прасад и Йен[10][11], а также Картрайт и Стегер[12] показали, что существует ровно 50 ложных проективных поверхностей.

Бартель, Хирцебрух и Хёфер[13] дали метод поиска примеров, который, в частности, даёт поверхности X с . Исида[14] нашёл фактор такой поверхности с и если взять неразветвлённые покрытия этого фактора, получим примеры с для любого положительного k. Картрайт и Стегер [12] нашли примеры с для любого положительного целого n.

Примечания

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.