Мартингал

Мартинга́л в теории случайных процессов — такой случайный процесс, что наилучшим (в смысле среднеквадратичного) предсказанием поведения процесса в будущем является его настоящее состояние.

О системе в азартных играх см. Мартингейл; об элементе конской упряжи см. Мартингал
Остановленное броуновское движение как пример мартингала

Мартингалы с дискретным временем

  • Последовательность случайных величин называется мартинга́лом с дискре́тным вре́менем, если
  1. ;
  2. .
  • Пусть дана другая последовательность случайных величин . Тогда последовательность случайных величин называется мартингалом относительно или -мартингалом, если
  1. ;
  2. .

Мартингалы с непрерывным временем

Пусть есть вероятностное пространство с заданной на нём фильтрацией , где . Тогда случайный процесс называется мартингалом относительно , если

  1. измерима относительно для любого .
  2. .
  3. почти наверное, .[1]

Если в качестве взята естественная фильтрация , то называют просто мартингалом.

Суб- и супермартингалы

  • Пусть дана последовательность случайных величин . Тогда последовательность случайных величин называется су́б(су́пер)мартингалом относительно , если
  • Случайный процесс называется суб(супер)мартингалом относительно , если
  1. измерима относительно для любого .
  2. .
  3. .

Если в качестве взята естественная фильтрация , то называют просто суб(супер)мартингалом.

Свойства

  • Случайный процесс является мартингалом тогда и только тогда, когда он является одновременно субмартингалом и супермартингалом.
  • Если  — мартингал, то .
  • Если  — субмартингал, то  — супермартингал.
  • Если является мартингалом, а  — выпуклая функция, то  — субмартингал. Если  — вогнутая функция, то  — супермартингал.
  • Вообще говоря, мартингал не является марковским процессом.
    • Верно и обратное: марковский процесс не обязан быть мартингалом.

Примеры

  • Рассмотрим игру, при которой подбрасывается монета, и при выпадении «орла» игрок выигрывает 1 руб., а при выпадении «решки» проигрывает 1 руб. Тогда:
    • если монета уравновешена, то состояние игрока как функция количества игр является мартингалом;
    • если выпадение «орла» более вероятно, то состояние игрока — субмартингал;
    • если выпадение «решки» более вероятно, то состояние игрока — супермартингал.

Примечания

  1. А.В.Булинский, А.Н.Ширяев. Теория случайных процессов. Физматлит, 2005, С. 9.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.