Логарифмический декремент колебаний
Логарифми́ческий декреме́нт колеба́ний (декреме́нт затуха́ния; от лат. decrementum — «уменьшение, убыль») — безразмерная физическая величина, описывающая уменьшение амплитуды колебательного процесса и равная натуральному логарифму отношения двух последовательных амплитуд колеблющейся величины x в одну и ту же сторону:
Логарифмический декремент колебаний равен коэффициенту затухания β, умноженному на период колебаний T:
Этот параметр применяется, как правило, для линейных колебательных систем, поскольку в нелинейных системах период колебания, вообще говоря, зависит от амплитуды, а закон убывания амплитуды отличается от экспоненциального. В линейных системах колеблющаяся величина изменяется со временем как
где A = x(0) — начальная амплитуда,
- t — время,
- ω = 2π/T — циклическая частота колебания.
Обозначив Xn = x(nT), получаем отсюда, что отношение величин Xk и Xk+1 равно
Логарифмический декремент равен показателю этой экспоненты:
Если энергия колебательной системы пропорциональна x, то её добротность (относительная потеря энергии за время нарастания фазы на 1 радиан) равна
а логарифмический декремент выражается через добротность как
Для систем с высокой добротностью (т. е. со слабым затуханием) поэтому можно, разложив в ряд Маклорена по λ, ограничиться первыми двумя членами и заменить в этих формулах на что приводит к
Ссылки
- Декремент затухания // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 578. — 707 с. — 100 000 экз.