Астроинформатика

Астроинформатика — междисциплинарная наука на стыке астрономии, науки о данных, машинного обучения, информатики и информационных/коммуникационных технологий[2][3].

Протосверхскопление Гипериона было обнаружено в результате изучения архивных данных[1]

Описание

Астроинформатика посвящена применению достижений (например, разработка инструментов и методов) вычислительных наук, науки о данных, машинного обучения и статистики для проведения исследований и преподавания в области астрономии, ориентированной на данные[2] Первые шаги в этом направлении, сделанные в рамках инициатив астрономической виртуальной обсерватории[4][5][6], включали следующее: обнаружение данных, разработку стандартов для метаданных, моделирование данных, разработку словаря астрономических данных, доступ к данным, поиск информации, интеграцию данных и добычу данных[7]. Планы по дальнейшему развитию дисциплины, встретившие одобрение астрономического сообщества, были представлены Национальному исследовательскому совету (США) в 2009 году в программном документе «Состояние профессии», опубликованном в Десятилетнем обзоре по астрономии и астрофизики 2010 года[8]. Этот программный документ послужил основой для последующего более подробного описания астроинформатики в статье журнала «Информатика» «Астроинформатика: исследования и преподавание в области астрономии, ориентированные на данные».

Астроинформатика как отдельная область исследований была вдохновлена результатами биоинформатики и геоинформатики, а также методологией eScience[9] Джима Грея из Microsoft Research, чье наследие было сохранено и продолжено благодаря премии Jim Gray eScience Awards[10].

Астроинформатика в своей работе, главным образом, использует большую коллекцию цифровых баз данных со всего мира, архивы изображений и исследовательские инструменты. Но также она признает важность исторических данных, применяя современные технологии для их сохранения и анализа. Некоторые практики астроинформатики помогают оцифровывать исторические астрономические наблюдения и изображения, собирая их в большой базе данных, предоставляющей поиск через веб-интерфейс[3][11]. Другая цель — помощь в разработке новых методов и программного обеспечения для астрономов, помощь в обработке и анализе быстро растущего объема астрономических данных[12].

Астроинформатику называют «четвертой парадигмой» (1 — эмпирическая, 2 — теоретическая, 3 — вычислительная и 4 — ориентированная на данные) проведения астрономических исследований[13]. Астроинформатика задействует различные методы из таких областей, как добыча данных, машинное обучение, статистика, визуализация, управление научными данными и семантика[5]. Особенно важную роль играют добыча данных и машинное обучение, поскольку их целью является «обнаружение знаний на основе данных» (KDD) и «обучение на основе данных»[14][15].

Объем данных, собранных в результате астрономических наблюдений неба, за 2010-е годы вырос с гигабайтов до терабайтов и, по прогнозам, в 2020-х он еще вырастет до сотен петабайт благодаря работе Большого обзорного телескопа и до эксабайтов с помощью радиотелескопа Square Kilometre Array[16]. Обилие новых данных с одной стороны позволяет проводить результативные исследования, а с другой является вызовом, требующим новые подходы по их обработке. Отчасти благодаря этому наука, основанная на данных, становится признанной академической дисциплиной. Поэтому в рамках астрономии (и других научных дисциплин) развиваются наукоемкие, основанные на больших объемах данных направления, притом сами они теперь становятся (или уже стали) самостоятельными научными дисциплинами и полноценными академическими программами. Хотя в большинстве учебных заведений нет программ по астроинформатике, они, скорее всего, появятся в ближайшем будущем.

Информатику определяют как «использование цифровых данных, информации и связанных с ними услуг для проведения исследований и получения знаний», распространенное определение — «информатика — это дисциплина об организации, доступе, объединении и извлечения данных из множества источников для получения знаний и поддержки принятия решений». Поэтому астроинформатика включает множество естественно связанных с информатикой направлений, таких как моделирование данных, организацию данных и т. д., методы преобразования и нормализации для объединения данных и визуализации информации, извлечение знаний, методы индексации, методы поиска информации и добычи данных. Астроинформатика активно задействует системы классификации (например, таксономию, онтологию, фолксономию, совместную разметку данных[17]), астростатистику. Гражданские научные проекты, такие как Galaxy Zoo, также вносят ценный вклад в открытие нового, используют мета-разметку и характеризацию (описание) объектов в больших массивов астрономических данных. Все эти направления позволяют совершать научные открытия на основе самых разных больших коллекций данных, помогают совместному проведения исследований и переиспользованию данных как для исследований, так и для преподавания.

В 2012 году Совету Американского астрономического общества были представлены два программных документа[18][19], в результате были созданы официальные рабочие группы по астроинформатике и астростатистике для профессии астрономии в США и других странах[20].

Астроинформатика обеспечивает естественный контекст для интеграции образования и исследований[21]. Опыт проведения исследований за счет легкого повторного использования данных теперь может быть перенесен в класс, что позволяет развить навыки по работе с данными[22]. У него также есть много других применений, таких как переиспользование архивных данных для новых проектов, установление ссылок литература-данные, интеллектуальный поиск информации и многое другое.

Конференции

Год Место Ссылка
2019 г. Калтех
2018 г. Гейдельберг, Германия
2017 г. Кейптаун, Южная Африка
2016 г. Сорренто, Италия
2015 г. Дубровник, Далмация
2014 г. Университет Чили
2013 Австралийское национальное агентство телескопических наблюдений, CSIRO
2012 г. Microsoft Research Архивная копия от 22 октября 2018 на Wayback Machine
2011 г. Сорренто, Италия
2010 г. Калтех Архивная копия от 22 октября 2018 на Wayback Machine

Дополнительные конференции и списки:

Название Ссылка
Конференция 2019 по большим данным из космоса
Большой список конференций портала астростатистики и астроинформатики (ASAIP)
Ежегодные конференции по программному обеспечению и системам анализа астрономических данных (ADASS)

См. также

Примечания

  1. Largest Galaxy Proto-Supercluster Found - Astronomers using ESO's Very Large Telescope uncover a cosmic titan lurking in the early Universe. www.eso.org. Дата обращения: 18 октября 2018.
  2. Borne, Kirk D. (12 May 2010). “Astroinformatics: data-oriented astronomy research and education”. Earth Science Informatics. 3 (1—2): 5—17. DOI:10.1007/s12145-010-0055-2.
  3. Astroinformatics and digitization of astronomical heritage Архивная копия от 26 декабря 2017 на Wayback Machine, Nikolay Kirov. The fifth SEEDI International Conference Digitization of cultural and scientific heritage, May 19-20, 2010, Sarajevo. Retrieved 1 November 2012.
  4. Borne, Kirk D. Distributed data mining in the National Virtual Observatory // Data Mining and Knowledge Discovery: Theory, Tools, and Technology V. — P. 211–218.
  5. Borne, Kirk. Virtual Observatories, Data Mining, and Astroinformatics // Planets, Stars and Stellar Systems. — P. 403–443. — ISBN 978-94-007-5617-5.
  6. Laurino, O. (21 December 2011). “Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation”. Monthly Notices of the Royal Astronomical Society. 418 (4): 2165—2195. arXiv:1107.3160. Bibcode:2011MNRAS.418.2165L. DOI:10.1111/j.1365-2966.2011.19416.x.
  7. Borne, Kirk. Scientific Data Mining in Astronomy // Next generation of data mining. — London : CRC Press, 2008. — P. 91–114. — ISBN 9781420085860.
  8. Borne, Kirk (2009). “Astroinformatics: A 21st Century Approach to Astronomy”. Astro2010: The Astronomy and Astrophysics Decadal Survey. 2010: P6. arXiv:0909.3892. Bibcode:2009astro2010P...6B.
  9. Online Science. Talks by Jim Gray. Microsoft Research. Дата обращения: 11 января 2015.
  10. Jim Gray eScience Award. Microsoft Research.
  11. Astroinformatics in Canada, Nicholas M. Ball, David Schade. Retrieved 1 November 2012.
  12. 'Astroinformatics' helps Astronomers explore the sky. Phys.org. Heidelberg University. Дата обращения: 11 января 2015.
  13. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research.
  14. Ball, N.M. (2010). “Data Mining and Machine Learning in Astronomy”. International Journal of Modern Physics D. 19 (7): 1049—1106. arXiv:0906.2173. Bibcode:2010IJMPD..19.1049B. DOI:10.1142/S0218271810017160.
  15. Borne, K. AIP Conference Proceedings. — P. 347–351. doi:10.1063/1.3059074.
  16. Ivezić, Ž. Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS // AIP Conference Proceedings. — P. 359–365.
  17. Borne. Collaborative Annotation for Scientific Data Discovery and Reuse (недоступная ссылка). Bulletin of the ASIS&T. American Society for Information Science and Technology. Дата обращения: 11 января 2016. Архивировано 5 марта 2016 года.
  18. Borne. Astroinformatics in a Nutshell. asaip.psu.edu. The Astrostatistics and Astroinformatics Portal, Penn State University. Дата обращения: 11 января 2016.
  19. Feigelson. Astrostatistics in a Nutshell. asaip.psu.edu. The Astrostatistics and Astroinformatics Portal, Penn State University. Дата обращения: 11 января 2016.
  20. Feigelson, E. (2013). “New Organizations to Support Astroinformatics and Astrostatistics”. Astronomical Data Analysis Software and Systems Xxii. 475: 15. arXiv:1301.3069. Bibcode:2013ASPC..475...15F.
  21. Borne, Kirk (2009). “The Revolution in Astronomy Education: Data Science for the Masses”. Astro2010: The Astronomy and Astrophysics Decadal Survey. 2010: P7. arXiv:0909.3895. Bibcode:2009astro2010P...7B.
  22. Using Data in the Classroom. Science Education Resource Center at Carleton College. National Science Digital Library. Дата обращения: 11 января 2016.

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.