Теорема сравнения Штурма

Теорема сравнения Штурма — классическая теорема, дающая критерий неосцилляции решений некоторых линейных дифференциальных уравнений.

Названа в честь Жака Шарля Франсуа Штурма.[1] Расширенная версия теоремы, сформулированная ниже, была получена Мауро Пиконе.[2]

Формулировка

Пусть pi, qi i = 1, 2, — вещественнозначные непрерывные функции на интервале [a, b] и пусть

— два однородных линейных дифференциальных уравнения второго порядка в самосопряженной форме с

и

Пусть u — нетривиальное решение (1) с последовательными корнями в z1 и z2 и пусть v — нетривиальное решение (2). Тогда имеет место одно из следующих свойств:

  • Существует x в (z1, z2) такие, что v(x) = 0; или же
  • Решения u и v пропорциональны; то есть существует λ в R такое, что v(x) = λu(x).

См. также

  • Теорема сравнения Рауха — фундаментальный результат римановой геометрии получаемый применением теоремы сравнения Штурма.

Примечания

  1. C. Sturm, Mémoire sur les équations différentielles linéaires du second ordre, J. Math. Pures Appl. 1 (1836), 106–186
  2. M. Picone, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine, Ann. Scuola Norm. Pisa 11 (1909), 1–141.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.