Теорема Лейбница (геометрия)

Теорема или формула Лейбница — утверждение о медианах:

Медианы треугольника ABC пересекаются в точке M. Для произвольной точки O плоскости имеет место равенство

Из теоремы Лейбница следует, что среди всех точек плоскости точка пересечения медиан является точкой, для которой сумма квадратов расстояний до вершин треугольника имеет наименьшее значение.

Аналогичное утверждение справедливо для тетраэдра: сумма квадратов расстояний от точки до вершин тетраэдра минимальна для его центроида[1] — характеристическое свойство центроида.

Также, из этой теоремы следует формула для медианы тетраэдра[2].

Литература

  1. Свойства центроида тетраэдра, теорема Лейбница
  2. Формула Лейбница (недоступная ссылка). Дата обращения: 12 августа 2009. Архивировано 20 января 2009 года.
  • Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, И. И. Юдина. Геометрия. Дополнительные главы к учебнику 9 класс. 4-е изд. Изд-во Вита-Пресс, 2004. стр.67.
  • В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, С. А. Шестаков, И. И. Юдина. Геометрия. Пособие для углубленного изучения математики. Изд-во ФИЗМАТЛИТ, 2005. 488с. стр.344-345.
  • Понарин Я. П. Элементарная геометрия. В 2 т. М.: МЦНМО, 2004. — С. 42. — ISBN 5-94057-170-0.
  • Ловушка для треугольника. В.Дубровский, В.Сендеров (рассматриваются обобщения).
  • Мадер В.В. Полифония доказательств. Учеб.пособие. М.: Мнемозина, 2009. 344 с.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.