Теорема Гаусса — Люка

Теорема Гаусса — Люка

Для произвольного не равного тождественно постоянной многочлена с комплексными коэффициентами множество нулей его производной принадлежит выпуклой оболочке нулей многочлена .

О доказательстве

Доказательство теоремы опирается на следующее легко проверяемое утверждение: Если все корни многочлена находятся в полуплоскости , тогда в области справедливо неравенство:

,

из которого следует, что все корни производной также должны быть в полуплоскости .

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.