Теорема Гаусса — Люка
Теорема Гаусса — Люка
Для произвольного не равного тождественно постоянной многочлена с комплексными коэффициентами множество нулей его производной принадлежит выпуклой оболочке нулей многочлена . |
О доказательстве
Доказательство теоремы опирается на следующее легко проверяемое утверждение: Если все корни многочлена находятся в полуплоскости , тогда в области справедливо неравенство:
- ,
из которого следует, что все корни производной также должны быть в полуплоскости .
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.