Теорема Адамара о степенном ряде
Теорема Адамара о степенном ряде (также теорема Коши — Адамара) — утверждение, которое даёт оценку радиуса сходимости степенных рядов для некоторых случаев. Названа в честь французских математиков Коши и Адамара. Теорема была опубликована Коши в 1821[1], но оставалась незамеченной пока Адамар не переоткрыл её[2]. Адамар опубликовал результат в 1888 году[3]. Он также включил его в докторскую диссертацию в 1892 году[4].
Формулировка
Пусть — степенной ряд с радиусом сходимости . Тогда:
если верхний предел существует и положителен, то ;
если , то ;
если верхнего предела не существует, то .
Доказательство
Пусть .
Если точка такова, что , то и можно найти такое число , что почти для всех будет выполняться . Из этого неравенства следует, что геометрическая прогрессия является сходящейся мажорантой ряда , то есть .
Если, наоборот, точка удовлетворяет условию , то и для бесконечного множества номеров будет выполняться . Следовательно, ряд в точке расходится, поскольку его члены не стремятся к нулю.
Пусть . Тогда для каждого последовательность сходится к нулю. Поэтому, если выбрать число , то для почти всех номеров будет выполняться неравенство , откуда, как и в , следует сходимость ряда в точке . Формально .
Верхнего предела в не существует (т.е. формально ) в том и только том случае, если последовательность неограничена сверху. Если , то неограничена и последовательность . Поэтому ряд в точке расходится. Следует отметить, что при ряд сходится к . Окончательно (т.е. формально , фактически ).
Примечания
- Cauchy, A. L. (1821), Analyse algébrique.
- Bottazzini, Umberto (1986), The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass, Springer-Verlag, с. 116–117, ISBN 978-0-387-96302-0. Переведено на английский с итальянского Warren Van Egmond.
- Hadamard, J., Sur le rayon de convergence des séries ordonnées suivant les puissances d'une variable, C. R. Acad. Sci. Paris Т. 106: 259–262.
- Hadamard, J. (1892), Essai sur l'étude des fonctions données par leur développement de Taylor, Journal de Mathématiques Pures et Appliquées, 4e Série Т. VIII, <https://archive.org/details/essaisurltuded00hadauoft>. Также в Thèses présentées à la faculté des sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques, Paris: Gauthier-Villars et fils, 1892.
Литература
- Грауэрт Г., Либ И., Фишер В. Дифференциальное и интегральное исчисления, М., Мир, 1971