Суперпропорциональный делёж

В контексте справедливого разрезания торта суперпропорциональный делёж — это делёж, в котором каждый участник получает долю, строго большую 1/n (полного) ресурса по его собственной субъективной оценке ().

Суперпропорциональный делёж vs пропорциональный делёж

Суперпропорциональный делёж лучше, чем пропорциональный делёж, в котором каждый участник гарантированно получает по меньшей мере 1/n (). Однако, в отличие от пропорционального дележа, суперпропорциональный делёж существует не всегда. Когда все участники дележа имеют в точности те же функции оценок, лучшее, что мы можем дать каждому участнику, это в точности 1/n.

Необходимым условием существования суперпропорционального дележа является то, что не все участники имеют одну и ту же меру ценности.

Удивительным фактом является то, что в случае, когда оценки аддитивны и не атомичны, это условие является также и достаточным. То есть, если существует по меньшей мере два участника, функции оценок которых даже если слегка различны, существует суперпропорциональный делёж, в котором все участники получают более 1/n.

Гипотеза

Существование суперпропорционального дележа было предложено в виде гипотезы в 1948 году[1].

Было высказано мимоходом, что если есть два (и более) участника с различными оценками ценности, существует делёж, дающий каждому больше, чем просто его доля (Кнастер), и этот факт опровергает общее мнение, что разница в оценках делает справедливый делёж более трудным.

Доказательство существования

Первым опубликованным доказательством существования суперпропорционального дележа было следствие теоремы выпуклости Дубинса — Спеньера. Это было чисто теоретическое доказательство существования, основанное на выпуклости.

Протокол

Протокол получения суперпропорционального дележа был представлен в 1986[2].

Один кусок с разными оценками

Пусть C будет полным тортом. Протокол начинается с конкретного куска торта, скажем , который оценивается двумя участниками. Скажем, это будут Алиса и Боб.

Пусть a=VАлиса(X) и b=VБоб(X) и предположим без потери общности, что b>a.

Два куска с разными оценками

Найдём рациональное число между b и a, скажем p/q, такое, что b > p/q > a. Попросим Боба разрезать X на p равных частей и разрезать C \ X на q-p равных частей.

По нашим предположениям, значения Боба для каждого куска X больше 1/q, а для каждого куска C \ X меньше 1/q. Однако для Алисы по меньшей мере один кусок X (скажем, Y) должно иметь значение, меньшее 1/q, и по меньшей мере один кусок C\X (say, Z) должен иметь значение, большее 1/q.

Таким образом, мы имеем два куска Y и Z, такие, что:

VБоб(Y)>VБоб(Z)
VАлиса(Y)<VАлиса(Z)

Суперпропорциональный делёж для двух участников

Пусть Алиса и Боб делят оставшуюся часть C \ Y \ Z между ними пропорционально (например, с помощью протокола дели-и-выбирай). Добавим Z к порции Алисы, а Y к порции Боба.

Теперь каждый участник думает, что его/её распределение строго больше, чем при любом другом распределении, так что значение строго больше 1/2.

Суперпропорциональный делёж для n участников

Расширение этого протокола на n участников основано на протоколе «Одиночного Выбирающего» Финка.

Предположим, что у нас уже есть суперпропорциональный делёж для i-1 участников (для ). Новый участник №i вступает в игру и нам следует отдать ему некоторые доли от первых i-1 участников так, чтобы новый делёж оставался суперпропорциональным.

Рассмотрим, например, партнёра №1. Пусть d будет разницей между текущим значением партнёра №1 и (1/(i-1)). Поскольку текущий делёж суперпропорционален, мы знаем, что d>0.

Выберем положительное целое q, такое, что

Попросим участника №1 разделить его долю на кусков, которые он считает равными, и разрешим новому участнику выбрать кусков, которые для него наиболее ценны.

Участник №1 остаётся со значением его предыдущего значения, которое было равно (по определению d). Первый элемент становится , а d становится . Их суммирование даёт, что новое значение превосходит всего торта.

После того, как новый участник после получения q частей от каждого из первых i-1 участников будет иметь полное значение, не меньшее всего торта.

Это доказывает, что новый делёж является также суперпропорциональным.

Примечания

  1. Steinhaus, 1948, с. 101–4.
  2. Woodall, 1986, с. 300.

Литература

  • Hugo Steinhaus. The problem of fair division // Econometrica. — 1948. Т. 16, вып. 1. — .
  • Woodall D. R. A note on the cake-division problem // Journal of Combinatorial Theory, Series A. — 1986. Т. 42, вып. 2. С. 300. doi:10.1016/0097-3165(86)90101-9.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.