Правило вывода

Правило вывода — эффективная процедура для проверки того, что одна заданная формула в рассматриваемой теории непосредственно за один шаг выводится из других заданных формул.

В непротиворечивой теории теоремы получаются путём цепочки применения правил вывода этой теории. При этом если формула выводится за некоторое количество шагов из формул , то для выражения этого факта применяется обозначение . Если в таком случае рассматриваемая теория непротиворечива, а каждое из утверждений является либо аксиомой, либо теоремой, то также является теоремой.

В исчислении предикатов в гильбетровском варианте правилами вывода являются модус поненс и правило обобщения. По теореме Гёделя о полноте формула является выводимой в исчислении предикатов первого порядка тогда и только тогда, когда она общезначима, то есть истинна в любой интерпретации этого исчисления предикатов.

В исчислениях генценовского типа (исчислениях секвенций, системах натурального вывода) правила вывода играют основную роль — в них используется небольшое количество аксиом и развитые системы правил вывода. В теории доказательств применяются именно такие исчисления, поскольку благодаря подбору симметричных систем правил вывода возможно получить конструктивные результаты о непротиворечивости систем.

См. также

Литература

  • Драгалин А. Г. Математический интуиционизм. Введение в теорию доказательств. М.: Наука, 1979. — 256 с. — (Математическая логика и основания математики).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.