Мидори-2

Мидори-2, Midori-2, ADEOS-II (англ. Advanced Earth Observing Satellite 2) — японский спутник дистанционного зондирования Земли.

Мидори-2, ADEOS-II
Advanced Earth Observing Satellite 2
Заказчик NASDA
Производитель Mitsubishi Electric (MELCO)
Оператор National Space Development Agency[d]
Спутник Земли
Стартовая площадка Космический центр Танэгасима Стартовый комплекс Йошинобу
Ракета-носитель H-IIA (вариант 202) № 4
Запуск 1:31 (UTC) 14 декабря 2002 года
COSPAR ID 2002-056A
SCN 27597
Технические характеристики
Масса 3680 кг
Мощность 5,7 кВт
Источники питания Солнечные батареи
Элементы орбиты
Тип орбиты солнечно-синхронная
Наклонение 98°69
Период обращения 101,048
Высота орбиты 798,3×812,8 км
Целевая аппаратура
AMSR Микроволновой сканирующий радиометр
ILAS II спектрометр атмосферного лимба
SeaWinds скаттерометр
sharaku.eorc.jaxa.jp/ADE…
 Медиафайлы на Викискладе

Научные и практические задачи

Основной научной задачей «Мидори-2» было изучение глобальных механизмов изменений в экосфере Земли. Космический аппарат должен был собирать информацию о процессах, связанных с водой в мировом океане, циркуляции углерода, озона и энергии в земной атмосфере. Кроме этого, планировалось использовать результаты наблюдений в рыболовной и сельскохозяйственной отраслях[1].

История создания

Устройство и научное оборудование

«Мидори-2» состоит из двух модулей: приборный модуль (англ. mission module и базовый модуль (англ. bus module). Общие габариты двух модулей 6×4×4 м. На базовом модуле закреплена солнечная батарея с габаритами 3×24 метра. Общие габариты спутника по продольной оси составляют 11 м, и по перпендикулярной — 29 м. Каждый из модулей собран на собственной раме и имеет собственную систему терморегуляции. Модули связаны минимальным количеством интерфейсов, что позволило снизить количество предстартовых испытаний. На момент запуска «Мидори-2» был самым тяжёлым японским спутником Землм[1].

Базовый модуль

На борту базового модуля расположены функциональные подсистемы: электропитания, ориентации и контроля орбиты, двигатели. Кроме этого, на функциональном модуле смонтированы системы связи (прямая связь с наземным сегментом и межорбитальная), две подсистемы обработки данных (служебных данных и научных данных). Координация систем и подсистем базового модуля возложена на бортовой компьютер, он также управляет связью и производит обработку данных, генерируемых системами космического аппарата. На него возложена проверка научных инструментов приборного модуля и автономное планирование операций на борту спутника. Подсистема межорбитальной связи обеспечивала связь с «Мидори-2» через спутник-ретранслятор в периоды отсутствия прямой связи с наземными пунктами связи[1].

Система электропитания, кроме основной функции (обеспечение бортовых потребителей электропитанием), отвечала за контроль пиротехнических элементов, обеспечивавших развёртывание элементов спутника после выведения на орбиту. Для возможности работы в периоды затенения солнечных батарей, система электропитания заряжала бортовые буферные батареи и контролировала их разряд[2].

Система ориентации и контроля орбиты отвечала за формирование и поддержания трёхосной ориентации спутника. Для этого использовались гиродины и подсистема реактивного управления. Последняя использовала ракетные двигатели тягой 20 Н и 1 Н[2].

AMSR

AMSR (англ. Advanced Microwave Scanning Radiometer) — микроволновый сканирующий радиометр, выпущенный компанией англ. Matsushita Electric Industrial Co. Ltd.. Радиометр работал в восьми частотных каналах: от 6,9 ГГц до 89 ГГц. Инструмент получал данные, связанные с образованием и конденсацией водяного пара, температурой поверхности моря, скоростью ветра у поверхности, ледовым и снежным покровом и др. Ширина сканирования на поверхности Земли составляла около 1600 километров. Пространственное разрешение составляло 5 км в диапазоне 89 ГГц и 60 км в диапазоне 6,9 ГГц. Сканирующая антенна радиометра составляла 2 м — на момент запуска это была самая большая антенна подобного типа[1]. Сканирование производилось с частотой 40 оборотов в минуту с постоянным углом падения около 55º. Подвижная масса элементов сканера составляла около 200 кг. Для компенсации возмущений использовались гиродины[3].

Для микроволнового радиометра очень важно регулярно проводить калибровку оборудования. Создатели AMSR использовали внешнюю калибровочную схему. Для калибровки радиометра использовались две калибровочные мишени. Одна мишень представляла собой микроволновое зеркало, с помощью которого AMSR измерял температуру глубокого космоса — примерно 2,7° К[1]. Вторая мишень была источником высокотемпературного излучения — примерно 340° K. Впервые подобное решение было использовано в инструменте SSM/I на спутниках, запущенных по программе DMSP (англ. Defense Meteorological Satellite Program). При прохождении полосы сканирования основное зеркало AMSR наблюдает обе калибровочные мишени, что позволяет калибровать каждый из восьми рабочих каналов. Кроме этого, в рамках наземных подготовительных работ было проведено большое количество калибровочных испытаний[3].

Предшественником радиометра, работавшего на борту «Мидори-2», были радиометры MSR, летавшие на спутниках MOS-1 и MOS-1B. Развитием AMSR стали радиометры AMSR-E и AMSR-2 [3].

GLI

GLI (англ. Global Imager) — оптический инструмент для наблюдения солнечного излучения, отражённого от поверхности Земли (суша, океаны, облачный покров). Датчик работал в видимом и инфракрасном диапазонах. С помощью GLI оценивались температура поверхности и распределение растительного и ледового покрова[1]. GLI создавался в качестве продолжения работ над прибором OCTS, работавшим на орбите на спутнике ADEOS[4].

GLI был предназначен для изучения и мониторинга углеродного цикла в океане, главным образом в отношении биологических процессов. Наблюдения в широкой спектральной полосе (от ближнего УФ до ближнего ИК) солнечного излучения, отражённого поверхностью Земли включали: различные виды грунтов, океан и облака; хлорофильный пигмент, фикобилин и растворенного органического вещества в океане; классификация фитопланктона по его пигменту; измерение температуры поверхности моря, распределение облаков, индекс растительности и т.д[4].

GLI представлял из себя 36-канальный оптико-механический спектрометр со спектральными интерференционными (дихроичными) фильтрами. Сканирующее зеркало колебалось с частотой 16,7 Гц в диапазоне ± 20º от надира. Инструмент имел пять фокальных плоскостей: два для канала VNIR, два для канала SWIR и один для канала MWIR/TIR. Две фокальные плоскости VNIR имели матрицы с 13 и 10 линейками детекторов соответственно. Две фокусные плоскости SWIR имели матрицы с 4 и 2 линейками детекторов. Канал MWIR/TIR имел одну фокальную плоскость с матрицей детекторов для 7 диапазонов. Линейка детекторов SWIR охлаждалась до 220 K помощью многоступенчатого элемента Пельтье. Детекторы MWIR/TIR охлаждалась до 80 K с помощью холодильника на цикле Стирлинга. Материал детекторов VNIR — Si, SWIR — InGaAs, материал MWIR/TIR — CMT[4].

ILAS II

ILAS II (англ. Improved Limb Atmospheric Spectrometer II) — спектрометр для исследования озонового слоя в полярных областях. Спектрометр должен был анализировать атмосферный лимб на просвет. Целью работы спектрометра было непрерывное наблюдение атмосферы в областях над северным и южным полюсами в течение длительного времени для исследования механизмов истощения озонового слоя. Эти исследования могли помочь оценить эффективность мер, принимаемых человечеством, таких как регулируемое использование веществ, разрушающих озоновый слой[1].

ILAS II являлся дальнейшим развитием прибора ILAS, работавшем на борту космического аппарата ADEOS. Инструмент состоит из следующих элементов[5]:

Схема телескопа Кассегрена
  • зеркало, подвешенное на двухосном кардане;
  • телескоп Кассегрена диаметром 13 см
  • разделитель каналов;
  • три инфракрасных спектрометра;
  • спектрометр видимого излучения;
  • датчик Солнца;
  • модуль обработки сигналов.
Схема монохроматор Черни-Тёрнера

Система инфракрасных спектрометров состояла из трёх каналов:

  • 1-я спектральная полоса: 44 ИК-канала от 6,21 до 11,76 мкм (850—1610 см−1) с разрешением 0,1296 мкм;
  • 2-я спектральная полоса: 22 ИК-канала от 3,0 до 5,7 мкм (1754-3330 см−1);
  • 3-я спектральная полоса: 22 ИК-канала от 12,78 до 12,85 мкм (778,2-782,4 см−1) с разрешением 1024 см−1

Спектрометры 1-й и 2-й спектральных полос были выполнены по типу монохроматора Черни-Тёрнера. Детекторы всех спектральных полос были изготовлены из PbTiO3.


SeaWinds

Задачей скаттерометра англ. SeaWinds были ежедневные высокоточные наблюдения направления и скорости ветра над поверхностью океана. Эти наблюдения должны были помочь пониманию влияния атмосферы и океана на метеосистему планеты. Подобные исследования могут привести к улучшению точности прогнозирования погоды и в особенности предсказанию поведения тайфунов. SeaWin был улучшенным вариантом скаттерометра NSCAT (NASA Scatterometer), установленного ранее на спутнике Мидори. Метод работы скаттерометра SeaWind был основан на измерении высоты и направления океанских волн, облучённых радиолокационным сигналом. Сигнал, отраженный от поверхности, анализировался и на его основе формировались данные о ветре. Первая модель датчика этого типа была запущена на орбиту в июле 1999 года на спутнике наблюдения Земли QuikSCAT (NASA)[1].

POLDER

POLDER (англ. Polarization and Directionality of the Earth's Reflectances) — широкоформатный отображающий радиометр, который должен был обеспечивать систематические измерения спектральных и поляризационных характеристик солнечного излучения, отражённого Землей и атмосферой. Его возможности создавали новые перспективы для исследования различий излучения, рассеянного атмосферой и излучения, отражённого земной поверхностью. Радиометр был изготовлен Французским космическим агентством CNES[1]. POLDER полностью идентичен одноимённому инструменту, работавшему на борту спутника ADEOS. Масса инструмента 32 кг, габариты примерно 800×500×250 мм. Прибор потреблял 42 Вт.

POLDER представлял собой систему формирования изображения, в которой представлены ПЗС-матрица, широкая полевая телецентрическая оптика и вращающееся колесо, нёсшее спектральные и поляризованные фильтры.

Спектральные характеристики прибора определены в таблице:

TEDA

TEDA (англ. Technical Engineering Data Acquisition Equipment) — набор элементов для мониторинга воздействия космической радиации[1].

Запуск на орбиту и функционирование

Запуск

Запуск «Мидори-2» был произведён 14 декабря 2002 года. Для запуска использовался стартовый комплекс Танэгасима. Для выведения на орбиту использовалась ракета-носитель H-IIA в конфигурации 202. Это был четвёртый запуск ракеты-носителя и второй эксплуатационный. Для запуска полезной нагрузки использовался головной обтекатель «типа 5S» диаметром пять метров[к 1]. Это был первый запуск H-IIA с таким обтекателем. В этом запуске впервые H-IIA производила запуск полезной нагрузки на приполярную околокруговую средневысотную солнечно-синхронную орбиту. Ещё одной особенностью запуска была циклограмма работы второй ступени: в отличие от трёх предыдущих запусков, вторая ступень производила лишь одно включение двигателя, а не четыре. Выведение на орбиту «Мидори-2» было основной целью запуска. Кроме этого, попутно на орбиту выводилось ещё три космических аппарата: FedSat, WEOS и μ-LabSat. Данный запуск не расценивался как кластерный, так как «Мидори-2» являлся основной целью и именно его выведение было приоритетным, что определило порядок отделения космических аппаратов. Первым отделялся «Мидори-2», что значительно повышало шансы успешного выведения на орбиту. Далее в порядке снижения приоритета отделялись FedSat, WEOS и μ-LabSat. В отличие от кластерного запуска, при запуске попутной нагрузки оператор пусковых услуг не нёс ответственности при неудачном запуске. Запуск всех космических аппаратов произошёл без замечаний, в соответствии с плановой циклограммой[7].

Функционирование

После отделения от адаптера ракеты-носителя запустилась циклограмма активации бортовых систем и раскрытия солнечной батареи. После раскрытия солнечной батареи была проведена ориентация спутника в пространстве по трём осям и разворот солнечной батареи на Солнце. После этого произошло развёртывание систем SeaWind и межорбитальной связи. Следующим этапом стал запуск гиродинов системы ориентации — с этого момента ответственность за ориентацию аппарата отвечают гиродины. Запуск гиродинов был важным элементом программы, после которого запуск космического аппарата был признан успешным и начался четырёхмесячный период ввода научной аппаратуры в рабочее состояние и проведение калибровки приборов[2].

При анализе поступающей телеметрии было выявлено, что солнечная батарея вырабатывает на 9 % больше электроэнергии, чем запланировано. Этот эффект сопровождался превышением внутреннего электрического напряжения солнечной батареи. При тестировании сканирующего радиометра AMSR возникла ошибка. После рассмотрения ситуации NASDA заявило, что причины ошибки выявлены и прибор работает нормально[2].

Авария

25 октября 2003 года JAXA выпустило пресс-релиз, в котором говорилось о возникновении нештатной ситуации на борту спутника. В 7:28 JST «Мидори-2» не вышел на связь. В 8:49 центру управления удалось связаться с неисправным спутником и оказалось, что аппарат находится в режиме минимального энергопотребления. В этом режиме оказались отключена вся научная аппаратура и большинство систем не связанных с непосредственным функционированием спутника. Причина перехода в этот режим была не известна. В 8:55 начались перебои связи и передача телеметрии прекратилась окончательно[8].


Комментарии

  1. Головной обтекатель, использованный в данном запуске, остался от программы H-II и прошёл доработку для запуска на ракете-носителе H-IIA[6]

Примечания

Ссылки



Литература

  • И. Афанасьев. ADEOS-II & Co на приполярной орбите // Новости космонавтики : журнал. — 2003. Т. 13, № 2 (241). С. 28—31.
  • И. Афанасьев. Adios, ADEOS... или Прощание с «Мидори» // Новости космонавтики : журнал. — 2003. Т. 13, № 12 (251). С. 55.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.