Кокейн, Дэвид

Дэвид Джон Хью Кокейн (англ. David John Hugh Cockayne; 19 марта 1942 — 22 декабря 2010) — английский и австралийский физик. Член Лондонского королевского общества с 1999 года. Основным вкладом в науку Кокейна является развитие метода темнопольной (слаболучевой) просвечивающей электронной микроскопии (ПЭМ) и разработка прецизионного метода дифракции электронов в электронном микроскопе. Был директором подразделения Электронной микроскопии Сиднейского университета (1974—1999) и значительно помог в его развитии. Являлся президентом Международной федерации обществ электронной микроскопии с 2003 по 2007 годы[3].

Дэвид Кокейн
Дата рождения 19 марта 1942(1942-03-19)
Место рождения
Дата смерти 22 декабря 2010(2010-12-22)[1] (68 лет)
Место смерти
Страна
Научная сфера материаловедение
Место работы
Награды и премии

Биография

Дэвид Джон Хью Кокейн родился 19 марта 1942 в Лондоне. Был средним ребенком в семье Джона Генри Кокейна и Иви Кокейн (в девичестве Хэттон). Его отец был полицейским в Лондоне во время Второй мировой войны, мать работала на почте. Когда Дэвиду было 8 лет, его семья эмигрировала в Австралию, поселившись в городе Джелонг, штат Виктория. Кокейн хорошо учился в школе, поэтому в 1953 году был зачислен в гимназию при Англиканской церкви Джелонга на стипендиальной основе.

В 1961 году Кокейн поступил в Мельбурнский университет, где изучал физику, и закончил его с отличием в 1964 году. Он был первым членом его семьи, получившим высшее образование. На четвертом году обучения Кокейн посещал курс Дж. Коули по электронной дифракции и после поступления в магистратуру стал работать в научной группе, занимавшейся исследованием дифракционных явлений. Кокейн с отличием закончил магистратуру в Мельбурнском университете и был награжден Конкурсной стипендией профессора Кернота за свою диссертацию. Он также был удостоен стипендии Содружества на получение степени доктора наук в колледже Магдалины в Оксфорде.

В сентябре 1966 Кокейн стал аспирантом на кафедре металлургии в Оксфорде и присоединился к исследовательской группе под руководством доктора М. Дж. Уилана, где занимался изучением изображений дефектов кристаллических решеток, полученных на электронном микроскопе.

В июне 1974 в возрасте 32 лет Кокейн занял пост директора Отдела электронной микроскопии Сиднейского университета. Ему также было присвоено звание доцента. В 1986 году за его выдающиеся заслуги в руководстве подразделением Кокейн был повышен до профессора, а затем в 1992 до заслуженного профессора (профессор физических наук в области электронной микроскопии и микроанализа). Помимо этого, в 1990-х годах Кокейн был назначен в несколько университетских комитетов. В частности, в 1990 году он присоединился к Исследовательскому комитету Сиднейского университета. Стал его председателем в 1994 году и занимал этот пост до своего отъезда в Оксфорд в 2000 году, где стал профессором Физических методов исследования материалов на кафедре Материаловедения, а также продолжил свои исследования. В сентябре 2009 года Кокейн ушел в отставку. Его уходу с должности была посвящена конференция, где присутствовало около сотни делегатов, многие из которых приехали из-за границы (см. Hirsch et al. 2010). Кокейн умер в 2010 году от рака лёгких.

Научные исследования

Мельбурнский университет, 1961–1966 гг.

После поступления в магистратуру Кокейн присоединился к научной группе, занимавшейся исследованиями дифракционных явлений, и принимал участие в усовершенствовании многослоевой теории дифракции электронов и оптимизации работы оборудования для проведения экспериментов в рамках этой теории[4].

В своей магистерской диссертации «Численные расчеты многолучевого решения задачи о дифракции электронов и их экспериментальная проверка с использованием дифракции в сходящихся пучках»[5] Кокейн достаточно подробно описал развитие многолучевой динамической теории дифракции электронов и привел к виду, удобному для компьютерных расчетов, а также продемонстрировал их высокую точность и хорошее согласие с экспериментом; провёл оценку точности и пригодности различных широко используемых приближений, например, «приближения фазовой решетки»; рассмотрел коэффициент распространения в многолучевой динамической теории.

Первый Оксфордский период, 1966–1974 гг.

В Оксфорде Кокейн приступил к разработке методов исследования сильных деформаций вблизи центров дислокаций, так как те, что существовали тогда, не позволяли ответить на некоторые вопросы, в частности, касавшиеся природы ядра дислокации и разделения частичных дислокаций, образованных диссоциацией.

На момент, когда Кокейн начал свою работу, другие исследователи уже получали качественные дифракционные изображения дислокаций в кристаллических решетках различных структур (Parsons & Hoelke 1969). Предполагалась прямая зависимость между положением линий на дифракционной картине и плоскостями кристаллической решетки, и это позволяло изучать искажения, находящиеся рядом с ядром дислокации. Однако в своем теоретическом исследовании Кокейн показал, что не всегда линия дислокации и ее искривление имеют взаимно однозначное отношение к распределению плоскостей решетки. Кроме того, изменения в геометрии дифракции вызывают изменения в количестве линий и их искривлении, которые никак не связаны с геометрией плоскости решетки. Проведенный теоретический анализ позже был подтвержден экспериментально[6].

При расчётах дифракционной картины с учётом как слабо возбуждённых рефлексов, так и сильных Кокейн заметил, что иногда лучи, имеющие низкие интенсивности в областях кристалла, близких к идеальным, являются более интенсивными на небольших участках рядом с дислокациями. При конкретных условиях максимум интенсивности такого луча может соответствовать дислокации, и её положение может быть определено с точностью, которая на порядок выше по сравнению с традиционным сильнолучевым методом электронной микроскопии. В результате данных исследований был разработан темнопольный (слаболучевой) метод, ставший классическим методом изучения сложных дефектных геометрий кристаллических решеток[7].

Кокейн вместе с коллегами обнаружил, что одним из возможных применений слаболучевой техники анализа является определение энергии дефекта упаковки (γ), и показал это на примере различных кристаллических структур[7][8][9][10][11][12]. Другой областью применения разработанного метода стало изучение природы и геометрии небольших дислокационных петель в структуре закаленных или облученных материалов[13]. Также исследования Кокейна во многом помогли выяснить природу дислокаций в полупроводниках[9][14][15].

Таким образом, метод электронной микроскопии, разработанный Кокейном и теоретически, и экспериментально, оказал значимое влияние на понимание структуры и свойств дефектов кристаллических решеток многих материалов и стал рутинным инструментом анализа, широко применяемым во всем мире в настоящий момент[16][17].

Сиднейский университет, 1974–2000 гг.

Темами исследований Кокейна в данный период были такие, как спинодальное разложение сплавов, изучение структуры тонких пленок, высокотемпературные сверхпроводники, а также анализ контраста изображения в зависимости от дефектов упаковки для фуллеренов, минералов и почв. Однако основное направление его работы сосредоточено на двух областях: (1) изучение снятия напряжения с помощью дислокаций несоответствия в полупроводниковых гетероструктурах, и (2) исследование аморфных материалов с помощью электронной дифракции.

Полупроводники

Основное внимание уделялось изучению снятия напряжения за счёт дислокаций несоответствия на границах раздела в полупроводниковых гетероструктурах.

В исследовании с Дж. Цзоу[18] была рассмотрена равновесная конфигурация диссоциации в низко/слабо деформированных одиночных гетероструктурах In0.1Ga0.9As / GaAs с помощью метода электронной микроскопии высокого разрешения (HREM). Было установлено расположение дислокаций несоответствия друг относительно друга.

Цзоу и Кокейн[19] продолжили изучение образования дислокаций несоответствия за счет диссоциированных 60-градусных пронизывающих дислокаций в гетероструктурах с квантовыми колодцами. В другой работе[20] было показано, что принятое условие для критической толщины дислокации, предложенное Мэтьюзом и др., (см. Matthewset al. 1976) нуждалось в модификации в эпитаксиальных слоях с большими несоответствиями, если граница раздела эпитаксиальный слой/подложка была перехвачена во время зарождения расширяющейся петли до достижения ею критического радиуса при самопроизвольном расширении.

В 1997 году Кокейном было проведено исследование профиля состава поверхности гетероструктуры (GaAs/Al0,6Ga0,4As) с использованием нового тогда метода моделирования изображений для сканирующей просвечивающей электронной микроскопии (STEM) высокоуглового кольцевого темного поля (HAADF)[21] и сравнение результатов с так называемым подходом химического картирования Урмазда (см. Ourmazd et al. 1989).

В совместной работе с Чоу Кокейн также исследовал стержневидные дефекты {311} в облученном Si в условиях слабого пучка, вызывающие интерес из-за их связи с временным явлением повышенной диффузии, которое ограничивает миниатюризацию Si-устройств[22][23].

В конце 1990-х Кокейн начал программу исследований квантовых точек используя просвечивающую электронную микроскопию (ПЭМ) в условиях многолучевого изображения осей зоны с целью получить информацию о составе, форме и размере квантовых точек, что было важно в определении их оптоэлектронных свойств.

Изучение аморфных материалов методом электронной дифракции

Совместно с Д.Р. МакКензи разработал метод дифракции электронов в электронном микроскопе для прецизионного определения функций радиального распределения из малых объемов аморфного материала (на порядки меньших, чем это было бы возможно для методов, основанных на дифракции рентгеновских лучей или нейтронов[24]).Раннее применение метода было первым доказательством существования тонкопленочного аморфного углерода в аллотропной модификации алмаза[25].

Второй Оксфордский период, 2000–2010 гг.

Кокейн вместе с коллегами исследовал влияние когерентного сходящегося излучения на данные дифракции электронов, полученные из нанообъемов аморфного материала[26]. Результаты показали, что для аморфных образцов диаметром всего 1,2 нм интерференционные эффекты в значительной степени подавлялись отсутствием порядка в аморфных материалах, что позволило для наноразмерных аморфных материалов, изученных с помощью когерентного излучения, использовать методы получения функций радиального распределения из дифракционных данных, полученных для некогерентного излучения.

Данный метод был применен Кокейном и его коллегами[27] для изучения структуры аморфной фазы в материале Ge2Sb2Te5 с быстрым фазовым переходом, потенциально интересным для использования в активном слое запоминающих устройств высокой плотности. В своей статье авторы использовали теорию функционала плотности (DFT) для получения новой модели строительных блоков аморфного Ge2Sb2Te5 и проверили ее в сравнении с приведенной функцией плотности, полученной из экспериментальных электронограмм аморфной фазы. Данное исследование является ранним примером использования электронной дифракции вместе с ab initio расчетами для получения многоатомной структуры наноразмерного объема материала.

До работ группы Кокейна в Сиднее и Оксфорде общепринятым взглядом на способы снятия напряжения в квантовых точках было изменение формы поверхности, легирование и введение дислокаций несоответствия. Однако им и его коллегами было установлено, что сегрегация элементов внутри квантовых точек является важным дополнительным механизмом снятия напряжения[28][29].

В результате совместного исследования, проведенного группой Кокейна и Фр. Росс из IBM, была разработана простая полуколичественная модель, объясняющая экспериментально наблюдаемую эволюцию формы и размера когерентных куполообразных островков Ge/Si (001), происходящую во время покрытия их кремнием[30]. Исследование предоставило ценную информацию об атомных процессах, которые определяют размер квантовых точек и, следовательно, их электронные и оптические свойства.

Группой Кокейна, при сотрудничестве с группой из Университета Карлсруэ, были определены положения легирующих атомов редкоземельных элементов на границе раздела между кристаллическим Si3N4 и аморфными межзеренными пленками в поликристаллической керамике[31]. Структурные различия в расположении La и Lu могут быть важны для понимания кинетики прикрепления зерен во время роста, поскольку определяют анизотропию зерен и объемные механические свойства керамики на основе Si3N4.

Научно-организационная работа в области электронной микроскопии

Кокейн внес значительный вклад в популяризацию, распространение и обучение электронной микроскопии как на национальном, так и на международном уровне. Вместе с профессором Х. Хашимото он продвигал Азиатско-Тихоокеанские конференции и семинары по электронной микроскопии и был генеральным секретарём комитета Азиатско-Тихоокеанских обществ электронной микроскопии (1984–1996). Кокейн также входил в ряд редакционных коллегий журналов и был одним из главных редакторов «Micron» с (1991-2009).

Одной из главной заслуг Кокейна является развитие Отдела электронной микроскопии Сиднейского университета. Отдел был создан в 1958 году с целью обслуживания оборудования для электронной микроскопии, которое имелось в университете. Кокейн стал его вторым директором в 1974. Он помог во многом улучшить условия работы подразделения, в частности, добился выделения большей площади и предоставления постоянного финансирования со стороны университета. Кокейн старался привлечь самих работников отдела к исследовательской деятельности. Он заботился о повышении квалификации технических специалистов и популяризации электронной микроскопии, повышения интереса студентов к науке, поэтому принимал участие в создании различных образовательных программ как для профильных специалистов, так и для учеников школ и школьных учителей. В Отделе часто проводились школьные экскурсии. Помимо этого, была реализована программа «Микроскопы в движении», которая позволила адаптировать сканирующий электронный микроскоп JEOL для демонстрации в различных образовательных учреждениях[32]. Работа Кокейна в качестве директора была высоко оценена в других австралийских университетах, и позже они стали открывать свои собственные подразделения.

Почести и отличия

  • Вице-президент Австралийского института науки и технологий (1985–1987)
  • Президент фонда Австралийского общества электронной микроскопии (1986–1988)
  • Председатель Национального комитета электронной микроскопии Австралийской академии наук (1986–1994)
  • Генеральный секретарь Международной федерации сообществ электронной микроскопии (1995–2002)
  • Член Королевского общества (1999)
  • Профессор колледжа Линакр Оксфордского университета. Почетный профессор школы физики Сиднейского университета (2000–2009)
  • Президент Международной федерации обществ микроскопии (2002–2006)
  • Почетный научный сотрудник Австралийского центра микроскопии и микроанализа, Сиднейский университет (2003-2008)
  • Почетный профессор Университета науки и технологий, Пекин (Китай) (2005–2010)
  • Почетный профессор Технологического университета Ланьчжоу (Китай) (2006–2007)
  • Вице-президент Международной федерации обществ микроскопии (2007–2010)
  • Медаль Мэсси Великобритании и Австралийского института физики (2009)

Семья

В 1962 году Кокейн познакомился со своей будущей женой Джоан Керр, которая также училась в Мельбурнском университете, где изучала французский и английский языки. Они поженились в 1967 году в Лондоне. У них родилось трое детей (дочери Софи (1973) и Тэмсин (1975) и сын Джеймс (1977)), а также есть три внука.

Личные увлечения и интересные факты

После избрания Кокейна членом Лондонского королевского общества, он написал своим школьным преподавателям физики и химии с благодарностями и отметил, что их прекрасная педагогическая работа стала фундаментом для его достижений.

В 2009 году Кокейн опубликовал повесть под названием «Воспоминания», в которой рассмотрены проблемы, с которыми сталкиваются исследователи и учёные в университетской среде[33]. Обсуждаемые темы включают в себя: давление на ученых о необходимости «активного производства публикаций»; важность недвусмысленного представления учеными своих результатов в любой письменной публикации; трудности, возникающие из-за различий в культуре.

С 2000 года Кокейн регулярно писал эссе под названием «Gooday from the UK»[34] для Информационного бюллетеня Австралийского общества микроскопии. За почти десятилетний период опубликовано около 30 статей. Они отражают его мнение о затратах и выгодах от исследований, роли научных конференций, проблемах, с которыми молодые ученые сталкиваются при получении академических должностей, нанотехнологиях, финансировании исследований и этике научных публикаций, а также о более специфичных для электронной микроскопии темах.

В одном из выпусков Кокейн описывает ситуацию, во время которой у пленарного лектора Королевского общества произошел сбой презентации PowerPoint. Лектором был сам Дэвид Кокейн (хотя он не говорит об этом в статье), и именно ему пришлось выступать с докладом о микроскопии без слайдов. Тем не менее, лекция прошла с большим успехом.

Коллеги о Кокейне

Цитата из заявления профессора Дж. Р. Лоуренса Ученому совету Сиднейского университета после смерти Дэвида:

«Профессор Кокейн тщательно/внимательно направлял дискуссию по этим темам [прим. характера исследований и обучения по нескольким предметным областям], оценивая взаимосвязь между исследованиями и традиционными академическими дисциплинами, а также творческой научной работой по всему спектру доступных в то время новых исследований. Это привело к формированию гораздо более широкой и более удовлетворительной основы, образованной для исследовательской политики и развития в университете»

Профессор Лоуренс о вкладе Кокейна в работу Ученого совета:

«Дэвид был информированным, культурным энтузиастом и ключевым членом команды заместителей председателя Совета, созданной Джоном Маком. Его ясный анализ и выдержка твердо основывались на его преданности высшим академическим интеллектуальным принципам и стандартам. Он действительно заботился и думал об академических исследованиях и преподавании, а также об их важности. Он внес большой вклад в межличностную сплоченность группы и, следовательно, в эффективность Ученого совета и, в конечном итоге, всего университета»

Цитата сэра П. Хирша, автора биографической статьи о Кокейне:

«В лекции («Овация Джорджа Адлингтона Сайма 1960»), озаглавленной «Образование цивилизованного человека» в Королевском австралазийском колледже хирургов в 1960 году, Дж. Р. Дарлинг, который был руководителем Дэвида в гимназии Джелонга, назвал цивилизованного человека «чувствительным, широким в своих интересах, терпимым и вместе с тем смелым, интеллектуальным и сильным в своих принципах» (Darling 1960). Это прекрасно описывает Дэвида»

В письме к Джоан Кокейн после смерти Дэвида президент Китайского общества электронных микроскопистов профессор Цзэ Чжан и его генеральный секретарь профессор Сяодун Хан отметили, что Кокейн внес значительный вклад в общество и развитие китайской электронной микроскопии. Перед отъездом Кокейна Новости Сиднейского университета дали такой комментарий:

«С тех пор, как Дэвид пришел, Отдел электронной микроскопии превратился в то, что можно описать как “жемчужина” университета» (см. Ratinac 2008)

Примечания

  1. http://www.guardian.co.uk/science/2011/mar/02/david-cockayne-obituary
  2. https://www.theguardian.com/science/2011/mar/02/david-cockayne-obituary
  3. Sir Peter Hirsch. David John Hugh Cockayne. 19 March 1942 — 22 December 2010 (англ.) // Biographical Memoirs of Fellows of the Royal Society. — 2015-01. Vol. 61. P. 53–79. ISSN 1748-8494 0080-4606, 1748-8494. doi:10.1098/rsbm.2014.0025.
  4. D. J. H. Cockayne, P. Goodman, J. C. Mills, A. F. Moodie. Design and Operation of an Electron Diffraction Camera for the Study of Small Crystalline Regions // Review of Scientific Instruments. — 1967-08. Т. 38, вып. 8. С. 1097–1103. ISSN 1089-7623 0034-6748, 1089-7623. doi:10.1063/1.1720975.
  5. D. J. H. Cockayne. Numerical calculations of the n-beam solution in electron diffraction with experimental verification using convergent beam diffraction // MSc thesis, Melbourne, University of Melbourne. — 1966.
  6. D. J. H. Cockayne, J. R. Parsons, C. W. Hoelke. A study of the relationship between lattice fringes and lattice planes in electron microscope images of crystals containing defects // Philosophical Magazine. — 1971-07. Т. 24, вып. 187. С. 139–153. ISSN 0031-8086. doi:10.1080/14786437108216429.
  7. D. J. H. Cockayne, I. L. F. Ray, M. J. Whelan. Investigations of dislocation strain fields using weak beams // Philosophical Magazine. — 1969-12. Т. 20, вып. 168. С. 1265–1270. ISSN 0031-8086. doi:10.1080/14786436908228210.
  8. I. L. F. Ray, D. J. H. Cockayne. The observation of dissociated dislocations in silicon // Philosophical Magazine. — 1970-10. Т. 22, вып. 178. С. 853–856. ISSN 0031-8086. doi:10.1080/14786437008220953.
  9. I. L. F. Ray, D. J. H. Cockayne. The Dissociation of Dislocations in Silicon // Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. — 1971. Т. 325, вып. 1563. С. 543–554. ISSN 0080-4630.
  10. D. J. H. Cockayne, M. L. Jenkins, I. L. F. Ray. The measurement of stacking-fault energies of pure face-centred cubic metals // Philosophical Magazine. — 1971-12. Т. 24, вып. 192. С. 1383–1392. ISSN 0031-8086. doi:10.1080/14786437108217419.
  11. R. C. Crawford, I. L. F. Ray, D. J. H. Cockayne. The weak-beam technique applied to superlattice dislocations in iron-aluminium alloys // The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. — 1973-01-01. Т. 27, вып. 1. С. 1–7. ISSN 0031-8086. doi:10.1080/14786437308228909.
  12. R. C. Crawford, I. L. F. Ray, D. J. H. Cockayne. Four-fold dissociations of super-lattice dislocations // Journal of Microscopy. — 1973-07. Т. 98, вып. 2. С. 196–199. ISSN 0022-2720. doi:10.1111/j.1365-2818.1973.tb03823.x.
  13. M. L. Jenkins, D. J. H. Cockayne, M. J. Whelan. The determination of the geometry and nature of small Frank loops using the weak-beam method // Journal of Microscopy. — 1973-07. Т. 98, вып. 2. С. 155–164. ISSN 0022-2720. doi:10.1111/j.1365-2818.1973.tb03817.x.
  14. D. J. H. Cockayne, P. Pirouz, N. Sumida, P. B. Hirsch & A. R. Lang. Dissociation of dislocations in diamond // Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. — 1983-04-08. Т. 386, вып. 1791. С. 241–249. ISSN 2053-9169. doi:10.1098/rspa.1983.0034.
  15. D. J. H. Cockayne, A. Hons, J. C. H. Spence. Gliding dissociated dislocations in hexagonal CdS // Philosophical Magazine A. — 1980-12. Т. 42, вып. 6. С. 773–781. ISSN 1460-6992 0141-8610, 1460-6992. doi:10.1080/01418618008239384.
  16. D.J.H. Cockayne. A Theoretical Analysis of the Weak-beam Method of Electron Microscopy // Zeitschrift für Naturforschung A. — 1972-03-01. Т. 27, вып. 3. С. 452–460. ISSN 0932-0784 1865-7109, 0932-0784. doi:10.1515/zna-1972-0313.
  17. D. J. H. Cockayne. The principles and practice of the weak-beam method of electron microscopy // Journal of Microscopy. — 1973-07. Т. 98, вып. 2. С. 116–134. ISSN 0022-2720. doi:10.1111/j.1365-2818.1973.tb03815.x.
  18. J. Zou, D. J. H. Cockayne. Equilibrium dissociation configuration of misfit dislocations in low strained In0.1Ga0.9As/GaAs single heterostructures // Applied Physics Letters. — 1993-10-18. Т. 63, вып. 16. С. 2222–2224. ISSN 1077-3118 0003-6951, 1077-3118. doi:10.1063/1.110533.
  19. J. Zou, D. J. H. Cockayne. Misfit-dislocation generation by dissociated dislocations in quantum-well heterostructures // Physical Review B. — 1994-03-15. Т. 49, вып. 12. С. 8086–8095. ISSN 1095-3795 0163-1829, 1095-3795. doi:10.1103/physrevb.49.8086.
  20. J. Zou, D. J. H. Cockayne. Nucleation of semicircular misfit dislocation loops from the epitaxial surface of strained‐layer heterostructures // Journal of Applied Physics. — 1996-05-15. Т. 79, вып. 10. С. 7632–7635. ISSN 1089-7550 0021-8979, 1089-7550. doi:10.1063/1.361527.
  21. S.C. Anderson, C.R. Birkeland, G.R. Anstis, D.J.H. Cockayne. An approach to quantitative compositional profiling at near-atomic resolution using high-angle annular dark field imaging // Ultramicroscopy. — 1997-09. Т. 69, вып. 2. С. 83–103. ISSN 0304-3991. doi:10.1016/s0304-3991(97)00041-7.
  22. D. J. H. Cockayne, C. T. Chou & N. A. Marks. Modelling of {311} defects in silicon // Proc. 6APEM, Hong Kong.
  23. C.T. Chou, D.J.H. Cockayne, J. Zou, P. Kringhoj, C. Jagadish. {111} and (311) rod-like defects in silicon ion implanted silicon // 1996 Conference on Optoelectronic and Microelectronic Materials and Devices. Proceedings. — IEEE. С. 305–308. ISBN 0-7803-3374-8. doi:10.1109/commad.1996.610131.
  24. D. J. H. Cockayne, D. R. McKenzie. Electron diffraction analysis of polycrystalline and amorphous thin films (англ.) // Acta Crystallographica Section A: Foundations of Crystallography. — 1988-11-01. Vol. 44, iss. 6. P. 870–878. ISSN 0108-7673. doi:10.1107/S0108767388004957.
  25. D. R. McKenzie, D. A. Muller, E. Kravtchinskaia, D. Segal, D. J. H. Cockayne. Synthesis, structure and applications of amorphous diamond (англ.) // Thin Solid Films. — 1991-12-10. Vol. 206, iss. 1. P. 198–203. ISSN 0040-6090. doi:10.1016/0040-6090(91)90421-S.
  26. W. McBride, D.J.H. Cockayne, D. Nguyen-Manh. Electron diffraction from nanovolumes of amorphous material using coherent convergent illumination // Ultramicroscopy. — 2003-08. Т. 96, вып. 2. С. 191–200. ISSN 0304-3991. doi:10.1016/s0304-3991(03)00007-x.
  27. C. Lang, S. A. Song, D. Nguyen-Manh, D. J. H. Cockayne. Building blocks of amorphous Ge2Sb2Te5 // Physical Review B. — 2007-08-01. Т. 76, вып. 5. С. 054101. doi:10.1103/PhysRevB.76.054101.
  28. X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, C. Lobo. Indium Segregation and Enrichment in Coherent InxGa(1-x)As/GaAs Quantum Dots // Physical Review Letters. — 1999-06-21. Т. 82, вып. 25. С. 5148–5151. doi:10.1103/PhysRevLett.82.5148.
  29. C. Lang, D. J. H. Cockayne, D. Nguyen-Manh. Alloyed Ge(Si)∕Si(001) islands: The composition profile and the shape transformation // Physical Review B. — 2005-10-26. Т. 72, вып. 15. С. 155328. doi:10.1103/PhysRevB.72.155328.
  30. C. Lang, S. Kodambaka, F. M. Ross, D. J. H. Cockayne. Real Time Observation of GeSi/Si(001) Island Shrinkage due to Surface Alloying during Si Capping // Physical Review Letters. — 2006-12-01. Т. 97, вып. 22. ISSN 1079-7114 0031-9007, 1079-7114. doi:10.1103/physrevlett.97.226104.
  31. D. J. H. Cockayne, G. B. Winkelman, C. Dwyer, T. S. Hudson, D. Nguyen-Manh, M. Doblinger, R. L. Satet & M. J. Hoffmann. Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride // Applied Physics Letters. — 2005-08-02. Т. 87, вып. 6. С. 061911. ISSN 0003-6951. doi:10.1063/1.2009067.
  32. Great moments 31. Establishment of the Australian Key Centre for Microscopy and Microanalysis. In 50 great moments celebrating the Golden Jubilee of the University of Sydney’s Electron Microscope Unit / K. Ratinac. — Sydney: Sydney University Press, 2008. — С. 215–219.
  33. D. J. H. Cockayne. Memories. — London: Blurb Creative Publishing Service, 2009. — 126 с.
  34. D. J. H. Cockayne. Gooday from the UK // Contributions to the Australian Microscopy and Microanalysis Society Newsletter. — 2002–2010. № 74–106.

Литература

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.