Задача Бёрнсайда

Задача Бёрнсайда — серия задач в теории групп вокруг вопроса о возможности определить конечность группы исходя лишь из свойств её элементов: должна ли быть конечно порождённая группа, в которой каждый элемент имеет конечный порядок, обязательно конечной.

Сформулирована Бёрнсайдом в 1902 году. Считается одной из ключевых задач теории групп.

При добавлении определённых условий получаются ограниченная задача Бёрнсайда, ослабленная задача Бёрнсайда.

История

Первоначальные усилия были направлены в сторону положительного решения задачи, так как все известные частные случаи давали позитивный ответ. Например, если группа порождена элементами и порядок каждого её элемента является делителем числа 4, она конечна. Более того, в 1959 году Кострикин (в случае простой экспоненты)[1] и в 1980-х годах Зельманов (в случае примарной экспоненты) доказали, что среди конечных групп с данным количеством генераторов и экспонент существует наибольшая. Из классификации конечных простых групп и результатов Кострикина — Зельманова следует существование наибольшей конечной группы среди всех конечных групп с данным числом порождающих и данной экспонентой.

Тем не менее, общий ответ на задачу Бёрнсайда оказался отрицательным. В 1964 году Голод и Шафаревич построили бесконечную группу типа Бёрнсайда, не предполагая, что каждый элемент имеет равномерно ограниченный порядок. В 1968 году Новиков и Адян предложили отрицательное решение задачи с ограниченной экспонентой для всех нечётных экспонент больше 4381[2][3][4]. В 1975 году Адян усовершенствовал метод и дал отрицательное решение задачи с ограниченной экспонентой для всех нечётных экспонент больше 665[5]. В 1982 году Ольшанский нашёл несколько контрпримеров (в частности, монстра Тарского) для достаточно больших нечётных экспонент (более ) и предоставил доказательство, основанное на геометрических идеях.

Случай чётной экспоненты оказался более сложным. В 1992 году Иванов анонсировал отрицательное решение для достаточно больших чётных экспонент, делящихся на большие степени числа 2 (детальное доказательство было опубликовано в 1994 году и заняло около 300 страниц). Позже в совместной работе Ольшанский и Иванов дали отрицательное решение для аналога задачи Бёрнсайда для случая гиперболических групп, при условии достаточно большой экспоненты.

Условие задачи

Неограниченная задача Бёрнсайда. В конечно порождённой группе все элементы имеют конечный порядок. Хотя, возможно, в совокупности эти порядки не ограничены. Следует ли отсюда, что в группе конечное число элементов?

Ограниченная задача Бёрнсайда. В конечно порождённой группе порядки всех элементов не превосходят заданного числа. Верно ли, что это группа конечного порядка?

Примечания

  1. Кострикин, А. И. Известия АН СССР // Серия математическая. — 1959. — т. 23. — № 1. — с. 3—34.
  2. Новиков П. С., Адян С. И. О бесконечных периодических группах. I // Известия АН СССР. Серия математическая. — 1968. Т. 32, выпуск 1. С. 212—244.
  3. Новиков П. С., Адян С. И. О бесконечных периодических группах. II // Известия АН СССР. Серия математическая. — 1968. Т. 32, выпуск 2. С. 251—524.
  4. Новиков П. С., Адян С. И. О бесконечных периодических группах. III // Известия АН СССР. Серия математическая. — 1968. Т. 32, выпуск 3. С. 709—731.
  5. Адян С. И. Проблема Бернсайда и тождества в группах. М.: Наука, 1975. — С. 336.

Литература

  • Кострикин, А. И. Вокруг Бёрнсайда. М.: Наука, 1986. — 232 с.
  • Ольшанский, А. Ю. Геометрия определяющих соотношений в группах. М.: Наука, 1989. — 446 с.

Ссылки

  • J. J. O'Connor, E. F. Robertson. A history of the Burnside problem. MacTutor History of Mathematics archive. School of Mathematics and Statistics, University of St Andrews, Scotland (июль 2002).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.