Гипотеза Агравала

Гипотеза Агравала, высказанная Маниндрой Агравалом в 2002[1], образует основу для теста Агравала — Каяла — Саксены. Гипотеза Агравала утверждает:

Пусть и  — два взаимно простых положительных целых числа. Если

,

то либо является простым, либо .

Следствия

Если гипотеза Агравала верна, это уменьшит вычислительную сложность теста Агравала — Каяла — Саксены с до .

Верность или ложность гипотезы

Гипотеза Агравала была проверена с помощью компьютера для и . Однако эвристический аргумент Карла Померанса и Хендрика Ленстры предполагает, что имеется бесконечно много контрпримеров[2]. В частности, эвристические аргументы показывают, что такие контрпримеры имеют асимптотическую плотность, большую для любого .

Если гипотеза Агравала не верна согласно вышеприведённым аргументам, модифицированная версия гипотезы Поповича может остаться верной:

Пусть и  — два взаимно простых положительных целых. Если

и

,

тогда либо простое, либо [3].

Примечания

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.