Банаховы пределы

Линейный функционал называется банаховым пределом если выполняются следующие 3 условия:
1) [Примечание 1]

2) для любых

3) для любого , где  — оператор сдвига, действующий следующим образом:

Существование таких пределов было доказано Стефаном Банахом[1]. Из определения следует, что и , если последовательность сходится. Множество банаховых пределов обозначается как . выпуклое замкнутое множество на единичной сфере пространства . Из неравенства треугольника следует, что для любых справедливо неравенство . Если и являются крайними точками множества , то [2].

Лемма 1

Различные банаховы пределы несравнимы, то есть если , то [3].

Теорема 1

Функционал можно представить в виде () тогда и только тогда, когда

  1. для всех

Для того, чтобы при указанных условиях данное представление было единственным, необходимо и достаточно, чтобы [3].

Понятие почти сходимости

Для заданных , , для любых

равномерно по [4]. Последнее равенство называется критерием Лоренца. Его можно уточнить следующим образом[5]:

Последовательность называется почти сходящейся к числу , если значения всех банаховых пределов на этой последовательности равны . Используется следующее обозначение: . Множество почти сходящихся последовательностей имеет обозначение . линейное не сепарабельное пространство, замкнутое и нигде не плотное в . Множество почти сходящихся к числу последовательностей обозначается как . Ясно, что для любого [3].

Пример

Последовательность не имеет обычного предела, но . Для проверки равенства можно использовать критерий Лоренца или свойство данной последовательности: .

Также можно будет использовать следующую лемму:

Лемма 2

Любая периодическая последовательность почти сходится к числу, равному среднему арифметическому значений по периоду [3].

Характеристические функции

Системой Радемахера называется последовательность функций

Каждому можно поставить в соответствие функцию

которая называется характеристической функцией банахова предела . комплекснозначная функция[6].

Теорема 2

Если и для всех , то для всех [6].

Свойства характеристических функций

Пусть , тогда

  1. периодична, причём периодом является любое двоично-рациональное число из
  2. для любых
  3. , что для любого и
  4. график плотен в прямоугольнике
  5. для всех

[6]

Источники

Примечания

  1. Здесь и далее под понимается последовательность

Литература

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.