Амбулаторное мониторирование пульсовых волн

Амбулато́рное (су́точное) монитори́рование пу́льсовых волн — это метод записи и последующей оценки таких показателей, как скорость распространения пульсовой волны (СРПВ), центральное артериальное давление (ЦАД) и других индексов, полученных с помощью анализа или другой обработки пульсовых волн, записанных в амбулаторных условиях во время повседневной деятельности пациента. Потребность в этом методе создаётся отчасти искусственно. Так, изменения СРПВ в аорте определяются только двумя параметрами: а) физическими свойствами содержащихся в медии этой артерии эластина и коллагена, соотношение которых в течение суток измениться не может (продолжительность изменений — годы или десятилетия); б) артериальным давлением. Суточные колебания СРПВ, зависящие только от артериального давления, таким образом, не несут никакой дополнительной диагностической ценности по сравнению с однократным измерением СРПВ, при использовании методик, изначально измеряющих артериальное давление, например, осциллометрическим способом[1]. Интерес могут представлять безманжеточные методики, с обратным принципом, то есть регистрирующие СРПВ с целью вычисления артериального давления. Аналогично, недавно было показано, что и суточное измерение ЦАД не несёт дополнительной диагностической ценности по сравнению с потенциальной ценностью однократного измерения[2].

Заявляемые преимущества метода

До недавнего времени исследование таких параметров гемодинамики, как давление крови в аорте, было ограничено процедурами, связанными с введением внутрисосудистых катетеров в крупные артерии. Только аппланационная тонометрия обеспечивала возможность измерять артериальную жесткость и параметры центральной гемодинамики без чрезкожного вмешательства, и тем самым расширяла ограниченные возможности диагностической катетеризации. Так, каротидно-феморальная СРПВ, получаемая этим неинвазивным методом имеет наибольшее количество эпидемиологических данных о связанном с её повышением сердечно-сосудистом риске, но требует относительно высокого уровня технических знаний, навыков и специально оборудованной лаборатории[1][3][4].

В настоящее время рядом производителей предложены автоматические методы оценки сосудистых биомаркеров в амбулаторных условиях в течение суток[5]. Как заявляют производители в своих рекламных материалах, техники измерений:

  • просты в использовании;
  • их точность не зависит от оператора;
  • позволяют проводить повторяющиееся записи в различных ситуациях, в частности, во время дневной активности и во время ночного сна c оценкой циркадного ритма;
  • делают возможным исследовать влияние антигипертензивной терапии на сосудистую функцию и её стабильность в динамических условиях, особенно при терапии препаратами с прямым сосудорасширяющим эффектом.

Наиболее спорным является последнее утверждение, поскольку, как показано выше, 24-часовые значения по сути не являются биомаркерами согласно их общепризнанному определению[1], следовательно не используются в испытаниях лекарств в качестве «отправной точки» стратегии их применения, и данное утверждение не более, чем маркетинговая выдумка.

Техники обработки сигналов

Концепции анализа пульсовых волн, продвигаемые производителями. а) Сигнал периферической пульсовой волны (например, из плечевой артерии) записан; б) Этот сигнал анализируется с помощью «запатентованного» математического алгоритма; в) После этого реконструируется сигнал центральной пульсовой волны; г) СРПВ может быть вычислена в соответствии с методом «от начала до начала», например, для каротидно-феморальной СРПВ путем умножения сонно-бедренного расстояния (ΔL) на 0,8 и делением результата на интервал времени (Δt) между сигналами волн на сонной и бедренных артериях; д) в качестве альтернативы, для амбулаторной оценки, рядом предприимчивых производителей предлагается получение СРПВ путем умножения «длины аорты» (ΔL, расстояние jugulum-symphisis или поверхностное морфологическое расстояние, соответствующее проекции аорты на поверхности тела) на 2 и константу (k) и делением результата на время прохода отраженной волны (RWTT, интервал времени между прямой и отраженной волнами).

Каротидно-феморальная СРПВ представляет собой скорость, с которой пульсовая волна проходит через аорту и крупные артерии за один сердечный цикл. При аппланационной тонометрии пульсовые волны получают, накладывая датчик на кожу над сонной и бедренной артериями, после чего измеряется временна́я задержка между началами записанных пульсовых волн (метод «foot-to-foot», то есть от «начала до начала») и расстояние между точками измерения. СРПВ высчитывается как соотношение между этими задержкой и расстоянием[6].

Оценка ЦАД может осуществляться с помощью записи пульсовой волны сонной или периферической артерии (лучевой, плечевой или бедренной). Если пульсовая волна измерялась на уровне сонной артерии, никакой математической обработки не требуется, кроме калибровки, так как артерия считается центральной. Если волна записана в периферической артерии, кривая аортальной волны высчитывается либо с помощью специальной передаточной функции, либо собственного («патентованного») алгоритма, либо математического моделирования[7].

Для амбулаторного оценки рядом предприимчивых производителей предлагается получение СРПВ путем умножения «длины аорты» (ΔL, расстояние «jugulum-symphisis» или поверхностное морфологическое расстояние, соответствующее проекции аорты на поверхности тела) на 2 и константу (k) и делением результата на время прохода отраженной волны (RWTT, интервал времени между прямой и отраженной волнами)[5]. Однако, хотя это не афишируется, данный метод является весьма сомнительным [8].

Устройства для 24-часового анализа пульсовых волн

Доступно несколько приборов и технологий для одновременного мониторирования АД, ЦАД и СРПВ в амбулаторных условиях. Исследования точности показателей, полученных при помощи этих устройств противоречивы, независимых исследований точности немного.

Mobil-O-Graph

Этот, основанный на осциллометрии, прибор позволяет получать данные о пульсовых волнах с помощью стандартной плечевой манжеты. Как сфигмоманометр, в 2000 году он имел класс точности по BHS B/A[9], но более поздние модели повысили свой класс до A/A,[10]. Запись пульсовых волн производится во время дополнительной накачки манжеты после цикла измерения АД в течение 10 секунд. Очертания пульсовой волны в аорте, ЦАД и ИА вычисляются с помощью общей передаточной функции алгоритма ARCSolver, а для оценки СРПВ в аорте используется патентованная математическая модель, комбинирующая данные о возрасте, ЦАД и характеристическом импедансе аорты. Имеются исследования точности показателей, получаемых при анализе пульсовых волн[11], их воспроизводимости[12] и применимости в клинике амбулаторных записей[13][14]. Тем не менее, независимое сравнение нескольких устройств показало неприемлимость применения в практике Mobil-O-Graph [15]. Производитель: I.E.M. GmbH[16].

BPLab

Производитель заявляет, что как сфигмоманометр, BPLab имеет высокий класс точности А/A по BHS не только при измерениях в общей популяции[17], но и у детей[18] и у беременных женщин[19]. Однако, часть этих исследований отозвана [20].

Пульсовые волны получают из осциллограмм во время ступенчатого стравливания манжеты на плече. Сигналы обрабатываются с помощью математического алгоритма Vasotens. Алгоритм для оценки СРПВ также «запатентован» и относится к сомнительным методам разделения волн и времени, где разница во времени между прямой и отраженной волной соотносится с расстоянием, измеренной в соответствии с инструкциями производителя. В литературе есть исследования точности показателей анализа пульсовой волны этим прибором[21]. Тем не менее, не исключено, что данные исследования сфабрикованы [22]. Независимые исследования также свидетельствуют о неприменимости обеих представленных для исследования версий оборудования [15]. Производитель: OOO «Петр Телегин»[23].

Arteriograph 24

Прибору Arteriograph 24 записывает сигнал пульсовых волн с плечевой артерии при дополнительной накачке до супрасистоличеакого давления на 2 минуты, с окклюзией артерии. Разница во времени между первым и вторым пиком (отраженными волнами) сопоставляется с измеряемым расстоянием от надгрудинной впадины до симфиза, что в итоге позволяет вычислить СРПВ[24]. Расчет систолического ЦАД основывается на взаимосвязи между измеренным инвазивно САД в аорте и в плечевой артерии на основе амплитуды поздней систолической волны.[25]. Несмотря на большое количество исследований точности показателей[26][27], лишь одно исследование свидетельствует о клиническом опыте применения в амбулаторном (суточном) режиме[28]. Производитель: Tensiomed Ltd[29].

Oscar 2

Класс точности BHS: A/A[30]. Патентованная обработка сигнала и функция переноса, основанная на технике SphygmoCor, запрограммированная в устройстве и примененная к плечевым пульсовым волнам, позволяет оценивать аортальные волны давления. Валидационные исследования относятся либо к алгоритму Oscar 2 либо к Xcel, оба основаны на передаточной функции SphygmoСor[31][32] Исследований, проведенных в амбулаторных условиях, нет. Производитель: Suntech Medical Inc[33].

Другие устройства

К устройствам, позволяющим мониторировать показатели, вычисляемые из пульсовых волн, можно отнести BPro (HealthSTATS International[34]), аппланационный тонометр, выполненный в виде наручных часов. Показатели этого устройства также исследованы на точность[35][36]. С помощью математического фильтра с N-точечной скользящей средней прибор оценивает ЦАД. СРПВ не предусмотрено. Имеются проспективные исследования, оценивающие эффект лечения на суточные параметры гемодинамики, записанные этим методом[37][38].

Другим типом устройства является пальцевой фотоплетизмограф Somnotouch NIBP (Somnomedics GmbH[39]), который совмещен с трехканальной ЭКГ и соединен с контролирующим устройством в виде наручных часов. Однако, его основным назначением является измерение PTT (интервал между R-зубцом ЭКГ и прибытием соответствующей, определённой фотоплетизмографом, пульсовой волны), и вычислением на основе его систолического и диастолического артериального давления, подразумевая, что увеличение АД приводит к увеличению напряжения сосудистой стенки и её жесткости, а увеличение СРПВ приводит к снижению PTT. Комбинация этой модели с единичными измерениями давления на уровне плечевой артерии, используемыми для калибровки, позволяют получать уровни АД, соответствующие изменению PTT, в режиме «от удара к удару»[40].

Наконец, необходимо упомянуть прибор Diasys Integra II (Novacor[41]), однако, исследования с применением данного прибора основаны на QKD (интервал от зубца Q ЭКГ до первого тона Короткова), суррогатном показателе артериальной жесткости, для которого в настоящее время нет клинического обоснования или рекомендаций в руководствах.[42]

Прогностическое значение и применение в клинике

Связь повышения измеренных в покое каротидно-феморальной СРПВ и ЦАД с сердечно-сосудистыми осложнениями, а также их прогностическое значение были обнаружены в различных группах пациентов[43][44][45]. В рекомендациях Европейского общества кардиологов (ESC) и Европейского общества гипертензии (ESH), упоминается, что каротидно-феморальная СРПВ, составляющая более 10 м/с, может быть связана с бессимптомным поражением органов - мишеней, но уточняется, что исследование СРПВ не рекомендуется для рутинной практики (пункт 5.5.2.2), и нет дополнительного прогностического значения ЦАД по сравнению с обычным измерением АД (пункт 4.12)[4]. Документ о позиции Американской ассоциации кардиологов (АНА) также упоминает каротидно-феморальную СРПВ [46]. Наконец, важно подчеркнуть, что Американской коллегией кардиологов категорически не рекомендуется для применения оценка СРПВ методами, использующими измерения в одной точке (например, манжеточными устройствами, основанными на осциллометрии)[47].

См. также

Примечания

  1. Vlachopoulos C, Xaplanteris P, Aboyans V, BrodmannM, Cífková R, Cosentino F, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: Endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis. 2015;241:507-32. PMID 26117398
  2. Georgieva N., Borizanova-Petkova A., Kinova E., Goudev A. Is 24 hour central aortic pressure superior to single measurement of central aortic pressure in well controlled hypertensive patients // European Heart Journal. — 2020, Now. — Vol. 41 (2). — ehaa 946.2757
  3. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588-605. PMID 17000623
  4. Williams B, Mancia G, Spiering W, et al; Authors/Task Force Members:. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018 Oct;36(10):1953-2041. PMID 30234752
  5. Posokhov IN. Pulse wave velocity 24-hour monitoring with one-site measurements by oscillometry. Med Devices (Auckl). 2013;6:11-5. PMID 23549868
  6. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445-8 PMID 22278144
  7. Stergiou GS, Parati G, Vlachopoulos C, et al. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions — Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability. J Hypertens. 2016 Sep;34(9):1665-77 PMID 27214089
  8. Westerhof BE, van den Wijngaard JP, Murgo JP, Westerhof N. Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity. Hypertension. 2008 Sep;52(3):478-83. PMID 18695144
  9. Jones CR, Taylor K, Chowienczyk P, Poston L, Shennan AH. A validation of the Mobil O Graph (version 12) ambulatory blood pressure monitor. Blood Press Monit. 2000;5:233-8 PMID 11035866
  10. WeiW, Tölle M, ZidekW, van der Giet M. Validation of the mobil-O-Graph: 24 h-blood pressure measurement device. Blood Press Monit. 2010;15:225-8. PMID 20216407
  11. Wassertheurer S, Kropf J, Weber T, van der Giet M, Baulmann J, Ammer M, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Hum Hypertens. 2010;24:498-504. PMID 20237499
  12. Protogerou AD, Argyris A, Nasothimiou E, Vrachatis D, Papaioannou TG, Tzamouranis D, et al. Feasibility and reproducibility of noninvasive 24-h ambulatory aortic blood pressure monitoring with a brachial cuff-based oscillometric device. Am J Hypertens. 2012;25:876-82. PMID 22673021
  13. Jankowski P, Bednarek A, Olszanecka A, Windak A, Kawecka-Jaszcz K, Czarnecka D. Twenty-four-hour profile of central blood pressure and central-to-peripheral systolic pressure amplification. Am J Hypertens. 2013;26:27-33. PMID 23382324
  14. Boggia J, Luzardo L, Lujambio I, Sottolano M, Robaina S, Thijs L, et al. The diurnal profile of central hemodynamics in a general Uruguayan population. Am J Hypertens. 2016;29:737-46. PMID 26476084
  15. Salvi P, Scalise F, Rovina M, et al. Noninvasive Estimation of Aortic Stiffness Through Different Approaches. Hypertension. 2019 Jul;74(1):117-129. PMID 31132954.
  16. Home - I.E.M. GmbH
  17. Koudryavtcev SA, Lazarev VM. Validation of the BPLab(®) 24-hour blood pressure monitoring system according to the European standard BS EN 1060-4:2004 and British Hypertension Society protocol. Med Devices (Auckl). 2011;4:193-6. PMID 22915946
  18. Ledyaev MY, Stepanova OV, Ledyaeva AM. Validation of the BPLab(®) 24-hour blood pressure monitoring system in a pediatric population according to the 1993 British Hypertension Society protocol. Med Devices (Auckl). 2015;8:115-8. PMID 25674018
  19. Dorogova IV, Panina ES. Comparison of the BPLab(®) sphygmomanometer for ambulatory blood pressuremonitoring withmercury sphygmomanometry in pregnant women: validation study according to the British Hypertension Society protocol. Vasc Health Risk Manag. 2015;11:245-9. PMID 25926739
  20. Comparison of the BPLab® Sphygmomanometer for Ambulatory Blood Pressure Monitoring with Mercury Sphygmomanometry in Pregnant Women: Validation Study According to the British Hypertension Society Protocol [Retraction]. Vasc Health Risk Manag. 2021 Dec 7;17:799-800. PMID 34916797
  21. Kotovskaya YV, Kobalava ZD, Orlov AV. Validation of the integration of technology that measures additional 'vascular' indices into an ambulatory blood pressure monitoring system. Med Devices (Auckl). 2014;7:91-7. PMID 24833924
  22. Fabricated data, manufacturer's tricks, and more: a couple of suggestions concerning guidelines for validation of pulse wave velocity measurement devices. October 2021. Conference: ARTERY 2021, book of abstracts
  23. Главная - BPLab
  24. Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens. 2009;27:2186-91. PMID 19834344
  25. Horváth IG, NémethA, Lenkey Z, Alessandri N, Tufano F, Kis P, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068-75. PMID 20651604
  26. Magometschnigg D. Blood pressure and arterial stiffness. A comparison of two devices for measuring augmentation index and pulse wave velocity. Wien Med Wochenschr. 2005;155:404-10. PMID 16392438
  27. Rajzer MW, Wojciechowska W, Klocek M, Palka I, Brzozowska-Kiszka M, Kawecka- Jaszcz K. Comparison of aortic pulse wave velocity measured by three techniques: Complior, SphygmoCor and Arteriograph. J Hypertens. 2008;26:2001-7. PMID 18806624
  28. Celik G, Yilmaz S, Kebapcilar L, Gundogdu A. Central arterial characteristics of gout patients with chronic kidney diseases. Int J Rheum Dis. 2015. PMID 26176346
  29. Arteriograph Company - Pulse Wave Analysis & Arterial Stiffness
  30. Goodwin J, Bilous M, Winship S, Finn P, Jones SC. Validation of the Oscar 2 oscillometric 24-h ambulatory blood pressure monitor according to the British Hypertension Society protocol. Blood Press Monit. 2007;12:113-7. PMID 17353655
  31. Butlin M, Qasem A, Avolio AP. Estimation of central aortic pressure waveform features derived from the brachial cuff volume displacement waveform. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2591-4. PMID 23366455
  32. Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, et al. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens. 2014;28:475-81. PMID 24430704
  33. Blood Pressure Clinical Monitoring and OEM NIBP - SunTech Medical
  34. Healthstats International
  35. Nair D, Tan SY, Gan HW, Lim SF, Tan J, Zhu M, et al. The use of ambulatory tonometric radial arterial wave capture to measure ambulatory blood pressure: the validation of a novel wrist-bound device in adults. J Hum Hypertens. 2008;22:220-2. PMID 17992251
  36. Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. J Am Coll Cardiol. 2011;57:951-61. PMID 21329842
  37. Williams B, Lacy PS, Baschiera F, Brunel P, Düsing R. Novel description of the 24-hour circadian rhythms of brachial versus central aortic blood pressure and the impact of blood pressure treatment in a randomized controlled clinical trial: the Ambulatory Central Aortic Pressure (AmCAP) Study. Hypertension. 2013;61:1168-76. PMID 23630950
  38. Teong HH, Chin AM, Sule AA, Tay JC. Effect of angiotensin receptor blockade on central aortic systolic blood pressure in hypertensive Asians measured using radial tonometry: an open prospective cohort study. Singap Med J. 2016;57:384-9. PMID 26875683
  39. The home of innovative & mobile diagnostic devices - Somnomedics
  40. Bilo G, Zorzi C, Ochoa Munera JE, Torlasco C, Giuli V, Parati G. Validation of the Somnotouch-NIBP noninvasive continuous blood pressure monitor according to the European Society of Hypertension International Protocol revision 2010. Blood Press Monit. 2015;20:291-4. PMID 25932885
  41. NOVACOR - English Version
  42. Gosse P, Cremer A, Papaioannou G, Yeim S. Arterial stiffness from monitoring of timing of Korotkoff sounds predicts the occurrence of cardiovascular events independently of left ventricular mass in hypertensive patients. Hypertension. 2013;62:161-7. PMID 23690349
  43. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318-27. PMID 20338492
  44. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636-46. PMID 24239664
  45. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865-71 PMID 20197424
  46. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66:698-722. PMID 26160955
  47. Chirinos JA, Segers P, Hughes T, Townsend R. Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019 Sep 3;74(9):1237-1263. PMID 31466622

Литература

  • Nichols W, O’Rourke M, Vlachopoulos C. McDonald’s blood flow in arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles. Boca Raton: CRC Press, 2011. ISBN 978-0-340-98501-4
  • Палеев Н. Р., Каевицер И. М. Атлас гемодинамических исследований в клинике внутренних болезней: бескровные методы. М.: Медицина, 1975 г. 240 с., илл.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.